985 resultados para eddy currents
Resumo:
The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents.
Resumo:
A strong correlation between the speed of the eddy-driven jet and the width of the Hadley cell is found to exist in the Southern Hemisphere, both in reanalysis data and in twenty-first-century integrations from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report multimodel archive. Analysis of the space–time spectra of eddy momentum flux reveals that variations in eddy-driven jet speed are related to changes in the mean phase speed of midlatitude eddies. An increase in eddy phase speeds induces a poleward shift of the critical latitudes and a poleward expansion of the region of subtropical wave breaking. The associated changes in eddy momentum flux convergence are balanced by anomalous meridional winds consistent with a wider Hadley cell. At the same time, faster eddies are also associated with a strengthened poleward eddy momentum flux, sustaining a stronger westerly jet in midlatitudes. The proposed mechanism is consistent with the seasonal dependence of the interannual variability of the Hadley cell width and appears to explain at least part of the projected twenty-first-century trends.
Resumo:
We study the effect of a thermal forcing confined to the midlatitudes of one hemisphere on the eddy-driven jet in the opposite hemisphere. We demonstrate the existence of an “interhemispheric teleconnection,” whereby warming (cooling) the Northern Hemisphere causes both the intertropical convergence zone (ITCZ) and the Southern Hemispheric midlatitude jet to shift northward (southward). The interhemispheric teleconnection is effected by a change in the asymmetry of the Hadley cells: as the ITCZ shifts away from the Equator, the cross-equatorial Hadley cell intensifies, fluxing more momentum toward the subtropics and sustaining a stronger subtropical jet. Changes in subtropical jet strength, in turn, alter the propagation of extratropical waves into the tropics, affecting eddy momentum fluxes and the eddy-driven westerlies. The relevance of this mechanism is demonstrated in the context of future climate change simulations, where shifts of the ITCZ are significantly related to shifts of the Southern Hemispheric eddy-driven jet in austral winter. The possible relevance of the proposed mechanism to paleoclimates is discussed, particularly with regard to theories of ice age terminations.
Resumo:
A strong relationship is found between changes in the meridional gradient of absorbed shortwave radiation (ASR) and Southern Hemispheric jet shifts in 21st century climate simulations of CMIP5 (Coupled Model Intercomparison Project phase 5) coupled models. The relationship is such that models with increases in the meridional ASR gradient around the southern midlatitudes, and therefore increases in midlatitude baroclinicity, tend to produce a larger poleward jet shift. The ASR changes are shown to be dominated by changes in cloud properties, with sea ice declines playing a secondary role. We demonstrate that the ASR changes are the cause, and not the result, of the intermodel differences in jet response by comparing coupled simulations with experiments in which sea surface temperature increases are prescribed. Our results highlight the importance of reducing the uncertainty in cloud feedbacks in order to constrain future circulation changes.
Resumo:
A set of four eddy-permitting global ocean reanalyses produced in the framework of the MyOcean project have been compared over the altimetry period 1993–2011. The main differences among the reanalyses used here come from the data assimilation scheme implemented to control the ocean state by inserting reprocessed observations of sea surface temperature (SST), in situ temperature and salinity profiles, sea level anomaly and sea-ice concentration. A first objective of this work includes assessing the interannual variability and trends for a series of parameters, usually considered in the community as essential ocean variables: SST, sea surface salinity, temperature and salinity averaged over meaningful layers of the water column, sea level, transports across pre-defined sections, and sea ice parameters. The eddy-permitting nature of the global reanalyses allows also to estimate eddy kinetic energy. The results show that in general there is a good consistency between the different reanalyses. An intercomparison against experiments without data assimilation was done during the MyOcean project and we conclude that data assimilation is crucial for correctly simulating some quantities such as regional trends of sea level as well as the eddy kinetic energy. A second objective is to show that the ensemble mean of reanalyses can be evaluated as one single system regarding its reliability in reproducing the climate signals, where both variability and uncertainties are assessed through the ensemble spread and signal-to-noise ratio. The main advantage of having access to several reanalyses differing in the way data assimilation is performed is that it becomes possible to assess part of the total uncertainty. Given the fact that we use very similar ocean models and atmospheric forcing, we can conclude that the spread of the ensemble of reanalyses is mainly representative of our ability to gauge uncertainty in the assimilation methods. This uncertainty changes a lot from one ocean parameter to another, especially in global indices. However, despite several caveats in the design of the multi-system ensemble, the main conclusion from this study is that an eddy-permitting multi-system ensemble approach has become mature and our results provide a first step towards a systematic comparison of eddy-permitting global ocean reanalyses aimed at providing robust conclusions on the recent evolution of the oceanic state.
Resumo:
Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by non-stationarity. We highlight a pronounced quasi-two-year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for non-stationarity. We then investigate the consequences of this non-stationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to non-stationary interannual variability external to any potential feedback process in the mid-latitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and re-analysis data as well as for understanding the mechanisms underlying variations in the zonal wind.
Resumo:
The stratospheric mean-meridional circulation (MMC) and eddy mixing are compared among six meteorological reanalysis data sets: NCEP-NCAR, NCEP-CFSR, ERA-40, ERA-Interim, JRA-25, and JRA-55 for the period 1979–2012. The reanalysis data sets produced using advanced systems (i.e., NCEP-CFSR, ERA-Interim, and JRA-55) generally reveal a weaker MMC in the Northern Hemisphere (NH) compared with those produced using older systems (i.e., NCEP/NCAR, ERA-40, and JRA-25). The mean mixing strength differs largely among the data products. In the NH lower stratosphere, the contribution of planetary-scale mixing is larger in the new data sets than in the old data sets, whereas that of small-scale mixing is weaker in the new data sets. Conventional data assimilation techniques introduce analysis increments without maintaining physical balance, which may have caused an overly strong MMC and spurious small-scale eddies in the old data sets. At the NH mid-latitudes, only ERA-Interim reveals a weakening MMC trend in the deep branch of the Brewer–Dobson circulation (BDC). The relative importance of the eddy mixing compared with the mean-meridional transport in the subtropical lower stratosphere shows increasing trends in ERA-Interim and JRA-55; this together with the weakened MMC in the deep branch may imply an increasing age-of-air (AoA) in the NH middle stratosphere in ERA-Interim. Overall, discrepancies between the different variables and trends therein as derived from the different reanalyses are still relatively large, suggesting that more investments in these products are needed in order to obtain a consolidated picture of observed changes in the BDC and the mechanisms that drive them.
Resumo:
A technique to calculate the current waveform for both close-up and remote short-circuit faults on DC supplied railways and subways is presented. Exact DC short-circuit current calculation is best performed by sophisticated computer transient simulations. However, an accurate simplified calculation method based on second-order approximation which can be easily executed with the help of a calculator or a spreadsheet program is proposed.
Resumo:
In the Tropics, continental shelves governed by western boundary currents are considered to be among the least productive ocean margins in the world, unless eddy-induced shelf-edge upwelling becomes significant. The eastern Brazilian shelf in the Southwest Atlantic is one of these, and since the slight nutrient input from continental sources is extremely oligotrophic. It is characterized by complex bathymetry with the presence of shallow banks and seamounts. In this work, a full three-dimensional nonlinear primitive equation ocean model is used to demonstrate that the interaction of tidal currents and the bottom topography of the east Brazil continental shelf is capable of producing local upwelling of South Atlantic Central Water, bringing nutrients up from deep waters to the surface layer. Such upper layer enrichment is found to be of significance in increasing local primary productivity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This work analyses the waveshapes of continuing currents and parameters of M-components in positive cloud-to-ground (CG) flashes through high-speed GPS synchronized videos. The dataset is composed of only long continuing currents (with duration longer than 40 ms) and was selected from more than 800 flashes recorded in Sao Jose dos Campos (45.864 degrees W, 23.215 degrees S) and Uruguaiana (29.806 degrees W, 57.005 degrees S) in Southeast and South of Brazil, respectively, during 2003 to 2007 summers. The videos are compared with data obtained by the Brazilian Lightning Location System (BrasilDAT) in order to determine the polarity of each flash and select only positive cases. There are only two studies of waveshapes of continuing currents in the literature. One is based on direct current measurements of triggered lightning, in which four different types of waveshapes were observed; and the other is based on measurements of luminosity variations in high-speed videos of CG negative lightning, in which besides the four types above mentioned two additional types were observed. The present work is an extension of the latter, using the same method but now applied to obtain the waveshapes of positive CG lightning. As far as the authors know, this is the first report on M-components in positive continuing currents. We also have used the luminosity-versus-time graphs to observe their occurrence and measure some parameters (duration, elapsed time and time between two successive M-components), whose statistics are presented and compared in detail to the data for negative flashes. We have plotted a histogram of the M-components elapsed time over the total duration of the continuing current for positive flashes, which presented an exponential decay (correlation coefficient: 0.83), similar to what has been observed for negative flashes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper shows the results of experimental investigations of three-phase banks composed of single-phase transformers and three-phase three-limb core transformers under simultaneous alternating and direct current excitations, for several winding connections. Harmonic analysis of excitation currents for different de saturation levels is performed.
Resumo:
A submodel of the so-called conformal affine Toda model coupled to the matter field (CATM) is defined such that its real Lagrangian has a positive-definite kinetic term for the Toda field and a usual kinetic term for the (Dirac) spinor field. After spontaneously broken the conformal symmetry by means of BRST analysis, we end up with an effective theory, the off-critical affine Toda model coupled to the matter (ATM). It is shown that the ATM model inherits the remarkable properties of the general CATM model such as the soliton solutions, the particle/soliton correspondence and the equivalence between the Noether and topological currents. The classical solitonic spectrum of the ATM model is also discussed. (C) 2001 Elsevier B.V. B.V. All rights reserved.