969 resultados para domain structure
Resumo:
Skp1, Cul1, Rbx1, and the FBXO25 protein form a functional ubiquitin ligase complex. Here, we investigate the cellular distribution of FBXO25 and its colocalization with some nuclear proteins by using immunochemical and biochemical approaches. FBXO25 was monitored with affinity-purified antibodies raised against the recombinant fragment spanning residues 2-62 of the FBXO25 sequence. FBXO25 protein was expressed in all mouse tissues tested except striated muscle, as indicated by immunoblot analysis. Confocal analysis revealed that the endogenous FBXO25 was partially concentrated in a novel dot-like nuclear domain that is distinct from clastosomes and other well-characterized structures. These nuclear compartments contain a high concentration of ubiquitin conjugates and at least two other components of the ubiquitin-proteasome system: 20S proteasome and Skp1. We propose to name these compartments FBXO25-associated nuclear domains. Interestingly, inhibition of transcription by actinomycin D or heat-shock treatment drastically affected the nuclear organization of FBXO25-containing structures, indicating that they are dynamic compartments influenced by the transcriptional activity of the cell. Also, we present evidences that an FBXO25-dependent ubiquitin ligase activity prevents aggregation of recombinant polyglutamine-containing huntingtin protein in the nucleus of human embryonic kidney 293 cells, suggesting that this protein can be a target for the nuclear FBXO25 mediated ubiquitination.
Resumo:
The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A(2) (TXA(2)) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C(4) (LTC(4))-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA(2) analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD(7). In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA(2) analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA(2) analog U46619 is stabilized by hydrogen bonding interactions of the omega-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC(4) and occupies a very similar position to LTE(4) in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation.
Resumo:
Background: Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBP(II)), which is the most variable segment of the protein. Methods: To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBP(II) in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBP(II), and T-and B-cell epitopes were localized on the 3-D structure. Results: The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBP(II), and (ii) PvDBP(II) appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions: This study shows that some polymorphisms of PvDBP(II) are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion.
Resumo:
Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 angstrom X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7(XAC2622)) and its interaction with VirB9. NMR solution studies show that residues 27-41 of the disordered flexible N-terminal region of VirB7(XAC2622) interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7(XAC2622) has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7(XAC2622) oligomerizes through interactions involving conserved residues in the N0 domain and residues 42-49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB(7XAC2622) oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring.
Resumo:
Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcU(AAAH)) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the Delta hrcU mutant with HrcU(AAAH) produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the Delta hrcU mutant complemented with HrcU(AAAH), suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the Delta hrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta.
Resumo:
We assess the effect of the choice of spanwise periodic length on simulations of the flow around a fixed circular cylinder. The Reynolds number is set to 400 because, at this value, both lift coefficient and shedding frequency show significant drop due to three-dimensional flow structures. From the analysis of the three-dimensionalities of the wake and of the integral quantities such as Strouhal number, RMS of lift coefficient and energy contained in the three-dimensional portion of the flow we obtain an estimate of the minimum spanwise length to satisfactorily represent the flow. Furthermore, we observe a distinct wake behavior when the spanwise length is approximately the mode B instability wavelength. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Bent DNA sites promote the curvature of DNA in both eukaryotic and prokaryotic chromosomes. Here, we investigate the localization and structure of intrinsically bent DNA sites in the extensively characterized Drosophila melanogaster third chromosome DAFC-66D segment (Drosophila amplicon in the follicle cells). This region contains the amplification control element ACE3, which is a replication enhancer that acts in cis to activate the major replication origin ori-beta. Through both electrophoretic and in silico analysis, we have identified three major bent DNA sites in DAFC-66D. The bent DNA site (b1) is localized in the ACE3 element, whereas the other two bent DNA sites (b2 and b3) are localized in the ori-beta region. Four additional bent DNA sites were identified in the intron of the S18 gene and near the TATA box of the S15, S19, and S16 genes. The identification of DNA bent sites in genomic regions previously characterized as functionally relevant for DNA amplification further supports a function for DNA bent sites in DNA replication in eukaryotes.
Fast Structure-Based Assignment of 15N HSQC Spectra of Selectively 15N-Labeled Paramagnetic Proteins
Resumo:
A novel strategy for fast NMR resonance assignment of N-15 HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively N-15-labeled samples. Comparison of sensitive undecoupled N-15 HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia Coll DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy.
Resumo:
The three possible disulfide bonded isomers of alpha-conotoxin GI have been selectively synthesised and their structures determined by H-1 NMR spectroscopy. alpha-Conotoxin GI derives from the venom of Conus geographus and is a useful neuropharmacological tool as it selectively binds to the nicotinic acetylcholine receptor (nAChR), a ligand-gated ion channel involved in nerve signal transmission. The peptide has the sequence ECCNPACGRHYSC-NH2, and the three disulfide bonded isomers are referred to as GI(2-7;3-13), GI(2-13;3-7) and GI(2-3;7-13). The NMR structure for the native isomer GI(2-7;3-13) is of excellent quality, with a backbone pairwise RMSD of 0.16 Angstrom for a family of 35 structures, and comprises primarily a distorted 3(10),, helix between residues 5 to 11. The two non-native isomers exhibit multiple conformers in solution, with the major populated forms being different in structure both from each other and from the native form. Structure-activity relationships for the native GI(2-7;3-13) as well as the role of the disulfide bonds on folding and stability of the three isomers are examined. It is concluded that the disulfide bonds in alpha-conotoxin GI play a crucial part in determining both the structure and stability of the peptide. A trend for increased conformational heterogeneity was observed in the order of GI(2-7;3-13) < GI(2-13;3-7) < GI(2-3;7-13). It was found that the peptide bond joining Cys2 to Cys3 in GI(2-3;7-13) is predominantly trans, rather than cis as theoretically predicted. These structural data are used to interpret the varying nAChR binding of the non-native forms. A model for the binding of native GI(2-7;3-13) to the mammalian nAChR is proposed, with an alpha-subunit binding face made up of Cys2, Asn4, Pro5, Ala6 and Cys7 and a selectivity face, comprised of Arg9 and His10. These two faces orient the molecule between the alpha and delta subunits of the receptor. The structure of the CCNPAC sequence of the native GI(2-7;3-13) is compared to the structure of the identical sequence from the toxic domain of heat-stable enterotoxins, which forms part of the receptor binding region of the enterotoxins, but which has a different disulfide connectivity. (C) 1998 Academic Press Limited.
Resumo:
Background: The redox proteins that incorporate a thioredoxin fold have diverse properties and functions. The bacterial protein-folding factor DsbA is the most oxidizing of the thioredoxin family. DsbA catalyzes disulfide-bond formation during the folding of secreted proteins, The extremely oxidizing nature of DsbA has been proposed to result from either domain motion or stabilizing active-site interactions in the reduced form. In the domain motion model, hinge bending between the two domains of DsbA occurs as a result of redox-related conformational changes. Results: We have determined the crystal structures of reduced and oxidized DsbA in the same crystal form and at the same pH (5.6). The crystal structure of a lower pH form of oxidized DsbA has also been determined (pH 5.0). These new crystal structures of DsbA, and the previously determined structure of oxidized DsbA at pH 6.5, provide the foundation for analysis of structural changes that occur upon reduction of the active-site disulfide bond. Conclusions: The structures of reduced and oxidized DsbA reveal that hinge bending motions do occur between the two domains. These motions are independent of redox state, however, and therefore do not contribute to the energetic differences between the two redox states, instead, the observed domain motion is proposed to be a consequence of substrate binding. Furthermore, DsbA's highly oxidizing nature is a result of hydrogen bond, electrostatic and helix-dipole interactions that favour the thiolate over the disulfide at the active site.
Resumo:
We have identified a novel mutation within the linker L12 region of keratin 5 (K5) in a family with the Kobner variant of epidermolysis bullosa simplex. The pattern of inheritance of the disorder in this family is consistent with an autosomal dominant mode of transmission. Affected individuals develop extensive and generalized blistering at birth or early infancy but in later years clinical manifestations are largely confined to palmo-plantar surfaces. Direct sequencing of polymerase chain reaction products revealed a T to C transition within codon 323 of K5 in affected individuals, resulting in a valine to alanine substitution of the seventh residue within the L12 linker domain. This mutation was not observed in unaffected family members or in 100 K5 alleles of unrelated individuals with normal skin. The other critical regions of K5 and K14 were unremarkable in this family except for common polymorphisms that have been previously described. The valine at position 7 of the L12 domain is absolutely conserved in all type II keratins, and in other intermediate filament subunits as well, which suggests that this residue makes an important contribution to filament integrity. Secondary structure analysis revealed that alanine at this position markedly reduces both the hydrophobicity and the beta-sheet nature of the L12 domain. This is the first report of a mutation at this position in an intermediate filament subunit and reinforces the importance of this region to filament biology.
Resumo:
Correct placement of the division septum in Escherichia coli requires the co-ordinated action of three proteins, MinC, MinD and MinE. MinC and MinD interact to form a non-specific division inhibitor that blocks septation at all potential division sites. MinE is able to antagonize MinCD in a topologically sensitive manner, as it restricts MinCD activity to the unwanted division sites at the cell poles, Here, we show that the topological specificity function of MinE residues in a structurally autonomous, trypsin-resistant domain comprising residues 31-88, Nuclear magnetic resonance (NMR) and circular dichroic spectroscopy indicate that this domain includes both alpha and beta secondary structure, while analytical ultracentrifugation reveals that it also contains a region responsible for MinE homodimerization. While trypsin digestion indicates that the anti-MinCD domain of MinE (residues 1-22) does not form a tightly folded structural domain, NMR analysis of a peptide corresponding to MinE(1-22) indicates that this region forms a nascent helix in which the peptide rapidly interconverts between disordered (random coil) and alpha-helical conformations, This suggests that the N-terminal region of MinE may be poised to adopt an alpha-helical conformation when it interacts with the target of its anti-MinCD activity, presumably MinD.
Resumo:
Importin alpha is the nuclear import receptor that recognizes classical monopartite and bipartite nuclear localization signals (NLSs). The structure of mouse importin alpha has been determined at 2.5 Angstrom resolution. The structure shows a large C-terminal domain containing armadillo repeats, and a less structured N-terminal importin beta-binding domain containing an internal NLS bound to the NLS-binding site. The structure explains the regulatory switch between the cytoplasmic, high-affinity form, and the nuclear, low-affinity form for NLS binding of the nuclear import receptor predicted by the current models of nuclear import. Importin beta conceivably converts the low- to high-affinity form by binding to a site overlapping the autoinhibitory sequence. The structure also has implications for understanding NLS recognition, and the structures of armadillo and HEAT repeats.
Resumo:
Retroviral entry into cells depends on envelope glycoproteins, whereby receptor binding to the surface-exposed subunit triggers membrane fusion by the transmembrane protein (TM) subunit. We determined the crystal structure at 2.5-Angstrom resolution of the ectodomain of gp21, the TM from human T cell leukemia virus type 1. The gp21 fragment was crystallized as a maltose-binding protein chimera, and the maltose-binding protein domain was used to solve the initial phases by the method of molecular replacement. The structure of gp21 comprises an N-terminal trimeric coiled coil, an adjacent disulfide-bonded loop that stabilizes a chain reversal, and a C-terminal sequence structurally distinct from HIV type 1/simian immunodeficiency virus gp41 that packs against the coil in an extended antiparallel fashion. Comparison of the gp21 structure with the structures of other retroviral TMs contrasts the conserved nature of the coiled coil-forming region and adjacent disulfide-bonded loop with the variable nature of the C-terminal ectodomain segment. The structure points to these features having evolved to enable the dual roles of retroviral TMs: conserved fusion function and an ability to anchor diverse surface-exposed subunit structures to the virion envelope and infected cell surface. The structure of gp21 implies that the N-terminal fusion peptide is in close proximity to the C-terminal transmembrane domain and likely represents a postfusion conformation.
Resumo:
Background: Mammalian purple acid phosphatases are highly conserved binuclear metal-containing enzymes produced by osteoclasts, the cells that resorb bone. The enzyme is a target for drug design because there is strong evidence that it is involved in bone resorption. Results: The 1.55 Angstrom resolution structure of pig purple acid phosphatase has been solved by multiple isomorphous replacement. The enzyme comprises two sandwiched beta sheets flanked by or-helical segments. The molecule shows internal symmetry, with the metal ions bound at the interface between the two halves. Conclusions: Despite less than 15% sequence identity, the protein fold resembles that of the catalytic domain of plant purple acid phosphatase and some serine/threonine protein phosphatases. The active-site regions of the mammalian and plant purple acid phosphatases differ significantly, however. The internal symmetry suggests that the binuclear centre evolved as a result of the combination of mononuclear ancestors. The structure of the mammalian enzyme provides a basis for antiosteoporotic drug design.