851 resultados para distributed power system
Resumo:
Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.
Resumo:
The rapidly increasing computing power, available storage and communication capabilities of mobile devices makes it possible to start processing and storing data locally, rather than offloading it to remote servers; allowing scenarios of mobile clouds without infrastructure dependency. We can now aim at connecting neighboring mobile devices, creating a local mobile cloud that provides storage and computing services on local generated data. In this paper, we describe an early overview of a distributed mobile system that allows accessing and processing of data distributed across mobile devices without an external communication infrastructure. Copyright © 2015 ICST.
Resumo:
The integration of growing amounts of distributed generation in power systems, namely at distribution networks level, has been fostered by energy policies in several countries around the world, including in Europe. This intensive integration of distributed, non-dispatchable, and natural sources based generation (including wind power) has caused several changes in the operation and planning of power systems and of electricity markets. Sometimes the available non-dispatchable generation is higher than the demand. This generation must be used; otherwise it is wasted if not stored or used to supply additional demand. New policies and market rules, as well as new players, are needed in order to competitively integrate all the resources. The methodology proposed in this paper aims at the maximization of the social welfare in a distribution network operated by a virtual power player that aggregates and manages the available energy resources. When facing a situation of excessive non-dispatchable generation, including wind power, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. This method is especially useful when actual and day-ahead resources forecast differ significantly. The distribution network characteristics and concerns are addressed by including the network constraints in the optimization model. The proposed methodology has been implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20.310 consumers and 548 distributed generators, some of them non-dispatchable and with must take contracts. The implemented scenario corresponds to a real day in Portuguese power system.
Resumo:
The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.
Resumo:
The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.
Resumo:
Further improvements in demand response programs implementation are needed in order to take full advantage of this resource, namely for the participation in energy and reserve market products, requiring adequate aggregation and remuneration of small size resources. The present paper focuses on SPIDER, a demand response simulation that has been improved in order to simulate demand response, including realistic power system simulation. For illustration of the simulator’s capabilities, the present paper is proposes a methodology focusing on the aggregation of consumers and generators, providing adequate tolls for the demand response program’s adoption by evolved players. The methodology proposed in the present paper focuses on a Virtual Power Player that manages and aggregates the available demand response and distributed generation resources in order to satisfy the required electrical energy demand and reserve. The aggregation of resources is addressed by the use of clustering algorithms, and operation costs for the VPP are minimized. The presented case study is based on a set of 32 consumers and 66 distributed generation units, running on 180 distinct operation scenarios.
Resumo:
A liberalização dos mercados de energia elétrica e a crescente integração dos recursos energéticos distribuídos nas redes de distribuição, nomeadamente as unidades de produção distribuída, os sistemas de controlo de cargas através dos programas de demand response, os sistemas de armazenamento e os veículos elétricos, representaram uma evolução no paradigma de operação e gestão dos sistemas elétricos. Este novo paradigma de operação impõe o desenvolvimento de novas metodologias de gestão e controlo que permitam a integração de todas as novas tecnologias de forma eficiente e sustentável. O principal contributo deste trabalho reside no desenvolvimento de metodologias para a gestão de recursos energéticos no contexto de redes inteligentes, que contemplam três horizontes temporais distintos (24 horas, 1 hora e 5 minutos). As metodologias consideram os escalonamentos anteriores assim como as previsões atualizadas de forma a melhorar o desempenho total do sistema e consequentemente aumentar a rentabilidade dos agentes agregadores. As metodologias propostas foram integradas numa ferramenta de simulação, que servirá de apoio à decisão de uma entidade agregadora designada por virtual power player. Ao nível das metodologias desenvolvidas são propostos três algoritmos de gestão distintos, nomeadamente para a segunda (1 hora) e terceira fase (5 minutos) da ferramenta de gestão, diferenciados pela influência que os períodos antecedentes e seguintes têm no período em escalonamento. Outro aspeto relevante apresentado neste documento é o teste e a validação dos modelos propostos numa plataforma de simulação comercial. Para além das metodologias propostas, a aplicação permitiu validar os modelos dos equipamentos considerados, nomeadamente, ao nível das redes de distribuição e dos recursos energéticos distribuidos. Nesta dissertação são apresentados três casos de estudos, cada um com diferentes cenários referentes a cenários de operação futuros. Estes casos de estudos são importantes para verificar a viabilidade da implementação das metodologias e algoritmos propostos. Adicionalmente são apresentadas comparações das metodologias propostas relativamente aos resultados obtidos, complexidade de gestão em ambiente de simulação para as diferentes fases da ferramenta proposta e os benefícios e inconvenientes no uso da ferramenta proposta.
Resumo:
This thesis reviews the role of nuclear and conventional power plants in the future energy system. The review is done by utilizing freely accesible publications in addition to generating load duration and ramping curves for Nordic energy system. As the aim of the future energy system is to reduce GHG-emissions and avoid further global warming, the need for flexible power generation increases with the increased share of intermittent renewables. The goal of this thesis is to offer extensive understanding of possibilities and restrictions that nuclear power and conventional power plants have regarding flexible and sustainable generation. As a conclusion, nuclear power is the only technology that is able to provide large scale GHG-free power output variations with good ramping values. Most of the currently operating plants are able to take part in load following as the requirement to do so is already required to be included in the plant design. Load duration and ramping curves produced prove that nuclear power is able to cover most of the annual generation variation and ramping needs in the Nordic energy system. From the conventional power generation methods, only biomass combustion can be considered GHG-free because biomass is considered carbon neutral. CFB combusted biomass has good load follow capabilities in good ramping and turndown ratios. All the other conventional power generation technologies generate GHG-emissions and therefore the use of these technologies should be reduced.
Resumo:
This paper presents a methodology for the placement and sizing evaluation of distributed generation (DG) in electric power systems. The candidate locations for DG placement are identified on the bases of Locational Marginal Prices (LMP's) obtained from an optimal power flow solution. The problem is formulated for two different objectives: social welfare maximization and profit maximization. For each DG unit an optimal placement is identified for each of the objectives.
Resumo:
In the last 20 years immense efforts have been made to utilize renewable energy sources for electric power generation. This paper investigates some aspects of integration of the distributed generators into the low voltage distribution network. An assessment of impact of the distributed generators on the voltage and current harmonic distortion in the low voltage network is performed. Results obtained from a case study, using real-life low voltage network, are presented and discussed.
Resumo:
This paper proposes a heuristic constructive multi-start algorithm (HCMA) to distribution system restoration in real time considering distributed generators installed in the system. The problem is modeled as nonlinear mixed integer and considers the two main goals of the restoration of distribution networks: minimizing the number of consumers without power and the number of switching. The proposed algorithm is implemented in C++ programming language and tested using a large real-life distribution system. The results show that the proposed algorithm is able to provide a set of feasible and good quality solutions in a suitable time for the problem. © 2011 IEEE.
Resumo:
In this paper, a novel methodology to price the reactive power support ancillary service of Distributed Generators (DGs) with primary energy source uncertainty is shown. The proposed methodology provides the service pricing based on the Loss of Opportunity Costs (LOC) calculation. An algorithm is proposed to reduce the uncertainty present in these generators using Multiobjective Power Flows (MOPFs) implemented in multiple probabilistic scenarios through Monte Carlo Simulations (MCS), and modeling the time series associated with the generation of active power from DGs through Markov Chains (MC). © 2011 IEEE.
Resumo:
Due to the renewed interest in distributed generation (DG), the number of DG units incorporated in distribution systems has been rapidly increasing in the past few years. This situation requires new analysis tools for understanding system performance, and taking advantage of the potential benefits of DG. This paper presents an evolutionary multi-objective programming approach to determine the optimal operation of DG in distribution systems. The objectives are the minimization of the system power losses and operation cost of the DG units. The proposed approach also considers the inherent stochasticity of DG technologies powered by renewable resources. Some tests were carried out on the IEEE 34 bus distribution test system showing the robustness and applicability of the proposed methodology. © 2011 IEEE.
Resumo:
In this paper, the calculation of the steady-state operation of a radial/meshed electrical distribution system (EDS) through solving a system of linear equations (non-iterative load flow) is presented. The constant power type demand of the EDS is modeled through linear approximations in terms of real and imaginary parts of the voltage taking into account the typical operating conditions of the EDS's. To illustrate the use of the proposed set of linear equations, a linear model for the optimal power flow with distributed generator is presented. Results using some test and real systems show the excellent performance of the proposed methodology when is compared with conventional methods. © 2011 IEEE.
Resumo:
This paper presents a mixed-integer linear programming approach to solving the optimal fixed/switched capacitors allocation (OCA) problem in radial distribution systems with distributed generation. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. © 2011 IEEE.