994 resultados para diluted magnetic semiconductor nanowire
Resumo:
The Dy3+ doped Y3-xDyxFe5O12 (x=0-3) nanopowders were prepared using microwave hydrothermal route. The structural and morphological studies were analyzed using transmission electron microscope, X-ray diffractometer and field emission scanning electron microscope. The nanopowders were sintered at 900 degrees C/90 min using microwave furnace. Dense ceramics with theoretical density of around 95% was obtained. Ferro magnetic resonance (FMR) spectrum and microwave absorption spectrum of Dy3+ doped YIG were studied, the signal exhibits a resonance character for all Dy3+ variations. It was observed that the location of the FMR signal peak at the field axes monotonically shifts to higher field with increasing Dy3+ content. The dielectric and magnetic properties (epsilon', epsilon `', mu' and mu `') of Dy3+ doped YIG were studied over a wide range of frequency (1-50 GHz). With increase of Dy3+ both epsilon' and mu' decreased. The low values of dielectric, magnetic properties and broad distribution of FMR line width of these ceramics are opening the real opportunity to use them for microwave devices above K- band frequency. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n-type GaAs at room temperature. A transient voltage of similar to 100 mu V was measured across a Au-Al2O3-GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of similar to 6 T. Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 x 10(15) cm(-3). Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.
Resumo:
Ferromagnetic semiconductor MnxGa1-xSb single crystals were fabricated by Mn-ions implantation, deposition, and the post annealing. Magnetic hysteresis-loops in the MnxGa1-xSb single crystals were obtained at room temperature (300 K). The structure of the ferromagnetic semiconductor MnxGa1-xSb single crystal was analyzed by Xray diffraction. The distribution of carrier concentrations in MnxGa1-xSb was investigated by electrochemical capacitance- voltage profiler. The content of Mn in MnxGa1-xSb varied gradually from x = 0.09 near the surface to x = 0 in the wafer inner analyzed by X-ray diffraction. Electrochemical capacitance-voltage profiler reveals that the concentration of p-type carriers in MnxGa1-xSb is as high as 1 1021 cm-3, indicating that most of the Mn atoms in MnxGa1-xSb take the site of Ga, and play a role of acceptors.
Resumo:
The electronic and magnetic properties of the transition metal sesqui-oxides Cr(2)O(3), Ti(2)O(3), and Fe(2)O(3) have been calculated using the screened exchange (sX) hybrid density functional. This functional is found to give a band structure, bandgap, and magnetic moment in better agreement with experiment than the local density approximation (LDA) or the LDA+U methods. Ti(2)O(3) is found to be a spin-paired insulator with a bandgap of 0.22 eV in the Ti d orbitals. Cr(2)O(3) in its anti-ferromagnetic phase is an intermediate charge transfer Mott-Hubbard insulator with an indirect bandgap of 3.31 eV. Fe(2)O(3), with anti-ferromagnetic order, is found to be a wide bandgap charge transfer semiconductor with a 2.41 eV gap. Interestingly sX outperforms the HSE functional for the bandgaps of these oxides.
Resumo:
This review summarises the recent advances in the field of silicon nanowire electronics from bottom-up assembled materials. The aim is to draw a comparison between bottom-up and top-down approaches, examining respective achievements and evaluating advantages and disadvantages of each methodology. Existing techniques for synthesis and doping are discussed to provide the framework in which practical electronic applications can be developed. Next, key device categories are reviewed, emphasising current challenges and proposed solutions. Finally, field perspectives are outlined. © 2012 Elsevier Ltd.
Resumo:
The paper reports on the in-situ growth of zinc oxide nanowires (ZnONWs) on a complementary metal oxide semiconductor (CMOS) substrate, and their performance as a sensing element for ppm (parts per million) levels of toluene vapour in 3000 ppm humid air. Zinc oxide NWs were grown using a low temperature (only 90°C) hydrothermal method. The ZnONWs were first characterised both electrically and through scanning electron microscopy. Then the response of the on-chip ZnONWs to different concentrations of toluene (400-2600ppm) was observed in air at 300°C. Finally, their gas sensitivity was determined and found to lie between 0.1% and 0.3% per ppm. © 2013 IEEE.
Resumo:
In this paper, we demonstrate an approach for the local synthesis of ZnO nanowires (ZnO NWs) and the potential for such structures to be incorporated into device applications. Three network ZnO NW devices are fabricated on a chip by using a bottom-up synthesis approach. Microheaters (defined by standard semiconductor processing) are used to synthesize the ZnO NWs under a zinc nitrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA, (CH2)6·N4) solution. By controlling synthesis parameters, varying densities of networked ZnO NWs are locally synthesized on the chip. The fabricated networked ZnO NW devices are then characterized using UV excitation and cyclic voltammetry (CV) experiments to measure their photoresponse and electrochemical properties. The experimental results show that the techniques and material systems presented here have the potential to address interesting device applications using fabrication methods that are fully compatible with standard semiconductor processing. © 2013 IEEE.
Resumo:
Semiconductor nanowires have recently emerged as a new class of materials with significant potential to reveal new fundamental physics and to propel new applications in quantum electronic and optoelectronic devices. Semiconductor nanowires show exceptional promise as nanostructured materials for exploring physics in reduced dimensions and in complex geometries, as well as in one-dimensional nanowire devices. They are compatible with existing semiconductor technologies and can be tailored into unique axial and radial heterostructures. In this contribution we review the recent efforts of our international collaboration which have resulted in significant advances in the growth of exceptionally high quality IIIV nanowires and nanowire heterostructures, and major developments in understanding the electronic energy landscapes of these nanowires and the dynamics of carriers in these nanowires using photoluminescence, time-resolved photoluminescence and terahertz conductivity spectroscopy. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
One of the main motivations for the great interest in semiconductor nanowires is the possibility of easily growing advanced heterostructures that might be difficult or even impossible to achieve in thin films. For III-V semiconductor nanowires, axial heterostructures with an interchange of the group III element typically grow straight in only one interface direction. In the case of InAs-GaAs heterostructures, straight nanowire growth has been demonstrated for growth of GaAs on top of InAs, but so far never in the other direction. In this article, we demonstrate the growth of straight axial heterostructures of InAs on top of GaAs. The heterostructure interface is sharp and we observe a dependence on growth parameters closely related to crystal structure as well as a diameter dependence on straight nanowire growth. The results are discussed by means of accurate first principles calculations of the interfacial energies. In addition, the role of the gold seed particle, the effect of its composition at different stages during growth, and its size are discussed in relation to the results observed.
Resumo:
GaAs and InP based III-V compound semiconductor nanowires were grown epitaxially on GaAs (or Si) (111)B and InP (111)B substrates, respectively, by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this paper, we will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters on the crystal structure and optical properties of various nanowires were studied in detail. We have successfully obtained defect-free GaAs nanowires with nearly intrinsic exciton lifetime and vertical straight nanowires on Si (111)B substrates. The crystal structure of InP nanowires, i.e., WZ or ZB, can also be engineered by carefully controlling the V/III ratio and catalyst size. © 2011 World Scientific Publishing Company.
Resumo:
InP and GaAs based nanowires were grown epitaxially on InP or GaAs (111)B substrates by metalorganic chemical vapor deposition via vapor-liquid-solid (VLS) mechanism. In this report, I will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters for InP and GaAs nanowires on the crystal quality have been studied in detail. We demonstrated the ability to obtain defect-free GaAs nanowires and control the crystal structure of InP nanowires, ie, WZ or ZB, by choosing a combination of growth parameters, such as temperature, V/III ratio and nanowire diameter. © 2009 IEEE NANO Organizers.