992 resultados para detrital zircon
Resumo:
Analyses of rock clasts and of heavy minerals in upper Miocene coarse detrital units drilled along the East Sardinia passive-type continental margin (Sites 654, 653, 652, and 656) reveal that the stretched basement contains quite complex rock suites. Taking also into account previous sampling data, in moving from west to east across the margin, the nature of the basement changes drastically. To the west there are mostly Hercynian basement rocks with their cover, referable to the alpine foreland of the Corsica-Sardinia block. To the east, along the lower margin, where crustal thinning is quite severe, the basement contains rock suites referable to a pre-upper Tortonian orogenized zone with units constituting parts of the Alpine and Apenninic chains (presumably with thickened continental crust prior to stretching). Largest thinning and ocean forming occurred then, in a rather short time, mostly at the expense of unstable crust just thickened by orogenetic/tectogenetic processes.
Resumo:
The Byrd Glacier discontinuity us a major boundary crossing the Ross Orogen, with crystalline rocks to the north and primarily sedimentary rocks to the south. Most models for the tectonic development of the Ross Orogen in the central Transantarctic Mountains consits of two-dimensional transects across the belt, but do not adress the major longitudinal contrast at Byrd Glacier. This paper presents a tectonic model centering on the Byrd Glacier discontinuity. Rifting in the Neoproterozoic producede a crustal promontory in the craton margin to the north of Byrd Glacier. Oblique convergence of the terrane (Beardmore microcontinent) during the latest Neroproterozoic and Early Cambrian was accompanied by subduction along the craton margin of East Antarctica. New data presented herein in the support of this hypothesis are U-Pb dates of 545.7 ± 6.8 Ma and 531.0 ± 7.5 Ma on plutonic rocks from the Britannia Range, subduction stepped out, and Byrd Glacier. After docking of the terrane, subduction stepped out, and Byrd Group was deposited during the Atdabanian-Botomian across the inner margin of the terrane. Beginning in the upper Botomian, reactivation of the sutured boundaries of the terrane resulted in an outpouring of clastic sediment and folding and faulting of the Byrd Group.
Resumo:
In 2004, Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition, ACEX) to the Lomonosov Ridge drilled the first Central Arctic Ocean sediment record reaching the uppermost Cretaceous (~430 m composite depth). While the Neogene part of the record is characterized by grayish-yellowish siliciclastic material, the Paleogene part is dominated by biosiliceous black shale-type sediments. The lithological transition between Paleogene and Neogene deposits was initially interpreted as a single sedimentological unconformity (hiatus) of ~26 Ma duration, separating Eocene from Miocene strata. More recently, however, continuous sedimentation on Lomonosov Ridge throughout the Cenozoic was proclaimed, questioning the existence of a hiatus. In this context, we studied the elemental and mineralogical sediment composition around the Paleogene-Neogene transition at high resolution to reconstruct variations in the depositional regime (e.g. wave/current activity, detrital provenance, and bottom water redox conditions). Already below the hiatus, mineralogical and geochemical proxies imply drastic changes in sediment provenance and/or weathering intensity in the hinterland, and point to the existence of another, earlier gap in the sediment record. The sediments directly overlying the hiatus (the Zebra interval) are characterized by pronounced and abrupt compositional changes that suggest repeated erosion and re-deposition of material. Regarding redox conditions, euxinic bottom waters prevailed at the Eocene Lomonosov Ridge, and became even more severe directly before the hiatus. With detrital sedimentation rates decreasing, authigenic trace metals were highly enriched in the sediment. This continuous authigenic trace metal enrichment under persistent euxinia implies that the Arctic trace metal pool was renewed continuously by water mass exchange with the world ocean, so the Eocene Arctic Ocean was not fully restricted. Above the hiatus, extreme positive Ce anomalies are clear signs of a periodically well-oxygenated water column, but redox conditions were highly variable during deposition of the Zebra interval. Significant Mn enrichments only occur above the Zebra interval, documenting the Miocene establishment of stable oxic conditions in the Arctic Ocean. In summary, extreme and abrupt changes in geochemistry and mineralogy across the studied sediment section do not suggest continuous sedimentation at the Lomonosov Ridge around the Eocene-Miocene transition, but imply repeated periods of very low sedimentation rates and/or erosion.