182 resultados para dermis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desmosomes are cell adhesion junctions required for the normal development and maintenance of mammalian tissues and organs such as the skin, skin appendages, and the heart. The goal of this study was to investigate how desmocollins (DSCs), transmembrane components of desmosomes, are regulated at the transcriptional level. We hypothesized that differential expression of the Dsc2 and Dsc3 genes is a prerequisite for normal development of skin appendages. We demonstrate that plakoglobin (Pg) in conjunction with lymphoid enhancer-binding factor 1 (Lef-1) differentially regulates the proximal promoters of these two genes. Specifically, we found that Lef-1 acts as a switch activating Dsc2 and repressing Dsc3 in the presence of Pg. Interestingly, we also determined that NF-κB pathway components, the downstream effectors of the ectodysplasin-A (EDA)/ ectodysplasin-A receptor (EDAR)/NF-κB signaling cascade, can activate Dsc2 expression. We hypothesize that Lef-1 and EDA/EDAR/NF-κB signaling contribute to a shift in Dsc isoform expression from Dsc3 to Dsc2 in placode keratinocytes. It is tempting to speculate that this shift is required for the invasive growth of placode keratinocytes into the dermis, a crucial step in skin appendage formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Neutrophilic dermatoses comprise a wide spectrum of inflammatory diseases with overlapping features characterized histologically by the presence of an aseptic neutrophilic infiltrate in the epidermis, dermis, and/or hypodermis and are often associated with systemic inflammatory and neoplastic disorders. OBSERVATIONS We describe 3 patients with an unusual neutrophilic dermatosis characterized by relapsing episodes of fever, widespread infiltrated plaques with bullous appearance, and variable involvement of the arms, legs, abdomen, and/or trunk. Light microscopy studies showed marked edema of the papillary dermis with an inflammatory infiltrate consisting mainly of mature neutrophils. All 3 patients were morbidly obese, and workup revealed underlying cancer in 2 cases: myeloma and breast carcinoma. Management of the underlying disease resulted in long-term remission of the skin disease. CONCLUSIONS The clinicopathologic features in our 3 cases best correspond to a widespread giant cellulitis-like form of Sweet syndrome. Knowledge of this newly observed unusual variant of Sweet syndrome within the broad spectrum of neutrophilic diseases is important for its prompt and proper management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Only limited data are available about the precise mechanism leading to tissue inflammation and damage in patients with hidradenits suppurativa (HS). The central pathogenetic event in HS is the occlusion of the upper parts of the hair follicle leading to a perifollicular lympho-histiocytic inflammation. In early lesions, neutrophilic abscess formation and influx of mainly macrophages, monocytes and dendritic cells predominate. In chronic disease, the infiltrate expand with increased frequencies of B cells and plasma cells. In the inflammatory infiltrates toll like receptor 2 (TLR2) was highly expressed by infiltrating macrophages and dendritic cells indicating that stimulation of inflammatory cells by TLR2 activating microbial products may be important trigger factors in the chronic inflammatory process. Furthermore, the pro inflammatory cytokines IL-12 and IL-23 are abundantly expressed by macrophages infiltrating papillary and reticular dermis of HS skin. Both of these cytokines are believed to be important mediators in autoimmune tissue destruction and its blocking by biologics has been shown to be effective in the treatment of psoriasis. Especially IL-23 has been shown to be involved in the induction of a T helper cell subset producing IL-17, therefore, named Th17, which is distinct from the classical Th1/Th2 subsets. In chronic HS lesions IL-17-producing T helper cells were found to infiltrate the dermis. An overexpression of various other cytokines like IL-1beta, CYCL9 (MIG), IL-10 , IL-11 and BLC has been described in HS lesion whereas IL-20 and IL-22 have been shown to be down regulated. Similar to psoriasis also in HS the antimicrobial peptides beta defensin 2 and psoriasin are highly upregulated. This may at least in part explain the clinical finding that HS patients suffer only rarely from skin infections. Taken together the inflammatory reaction leading to HS are only poorly understood, but they show many similarity with other inflammatory reactions as e.g. in psoriasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Erythema exsudativum multiforme majus (EEMM) and Stevens-Johnson Syndrome (SJS) are severe cutaneous reaction patterns caused by infections or drug hypersensitivity. The mechanism by which widespread keratinocyte death is mediated by the immune system in EEMM/SJS are still to be elucidated. Here, we characterized the blister cells isolated from a patient with EEMM/SJS overlap and investigated its cause. METHODS Clinical classification of the cutaneous eruption was done according to the consensus definition of severe blistering skin reactions and histological analysis. Common infectious causes of EEMM were investigated using standard clinical techniques. T cell reactivity for potentially causative drugs was assessed by lymphocyte transformation tests (LTT). Lymphocytes isolated from blister fluid were analyzed for their expression of activation markers and cytotoxic molecules using flow cytometry. RESULTS The healthy 58 year-old woman suffered from mild respiratory tract infection and therefore started treatment with the secretolytic drug Ambroxol. One week later, she presented with large palmar and plantar blisters, painful mucosal erosions, and flat atypical target lesions and maculae on the trunc, thus showing the clinical picture of an EEMM/SJS overlap (Fig. 1). This diagnosis was supported by histology, where also eosinophils were found to infiltrate the upper dermis, thus pointing towards a cutaneous adverse drug reaction (cADR). Analysis of blister cells showed that they mainly consisted of CD8+ and CD4+ T cells and a smaller population of NK cells. Both the CD8+ T cells and the NK cells were highly activated and expressed Fas ligand and the cytotoxic molecule granulysin (Fig. 2). In addition, in comparison to NK cells from PBMC, NK cells in blister fluids strongly upregulated the expression of the skin-homing chemokine receptor CCR4 (Fig 4). Surprisingly, the LTT performed on PBMCs in the acute phase was positive for Ambroxol (SI=2.9) whereas a LTT from a healthy but exposed individual did not show unspecific proliferation. Laboratory tests for common infectious causes of EEMM were negative (HSV-1/-2, M. pneumoniae, Parvovirus B19). However, 6 weeks later, specific proliferation to Ambroxol could no longer be observed in the LTT (Fig 4.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The skin is composed of two major compartments, the dermis and epidermis. The epidermis forms a barrier to protect the body. The stratified epithelium has self-renewing capacity throughout life, and continuous turnover is mediated by stem cells in the basal layer. p63 is structurally and functionally related to p53. In spite of their structural similarities, p63 is critical for the development and maintenance of stratified epithelial tissues, unlike p53. p63 is highly expressed in the epidermis and previously has been shown to play a critical role in the development and maintenance of the epidermis. The study of p63 has been complicated due to the existence of multiple isoforms: those with a transactivation domain (TAp63) and those lacking this domain (ΔNp63). Mice lacking p63 cannot form skin, have craniofacial and skeletal defects and die within hours after birth. These defects are due to the ability of p63 to regulate multiple processes in skin development including epithelial stem cell proliferation, differentiation, and adherence programs. To determine the roles of these isoforms in skin development and maintenance, isoform specific p63 conditional knock out mice were generated by our lab. TAp63-/- mice age prematurely, develop blisters, and display wound-healing defects that result from hyperproliferation of dermal stem cells. That results in premature depletion of these cells, which are necessary for wound repair, that indicates TAp63 plays a role in dermal/epidermal maintenance. To study the role of ΔNp63, I generated a ΔNp63-/- mouse and analyzed the skin by performing immunofluorescence for markers of epithelial differentiation. The ΔNp63-/- mice developed a thin, disorganized epithelium but differentiation markers were expressed. Interestingly, the epidermis from ΔNp63-/- mice co-expressed K14 and K10 in the same cell suggesting defects in epidermal differentiation and stratification. This phenotype is reminiscent of the DGCR8fl/fl;K14Cre and Dicerfl/fl;K14Cre mice skin. Importantly, DGCR8-/- embryonic stem cells (ESCs) display a hyperproliferation defect by failure to silence pluripotency genes. Furthermore, I have observed that epidermal cells lacking ΔNp63 display a phenotype reminiscent of embryonic stem cells instead of keratinocytes. Thus, I hypothesize that genes involved in maintaining pluripotency, like Oct4, may be upregulated in the absence of ΔNp63. To test this, q-RT PCR was performed for Oct4 mRNA with wild type and ΔNp63-/- 18.5dpc embryo skin. I found that the level of Oct4 was dramatically increased in the absence of ΔNp63-/-. Based on these results, I hypothesized that ΔNp63 induces differentiation by silencing pluripotency regulators, Oct4, Sox2 and Nanog directly through the regulation of DGCR8. I found that DGCR8 restoration resulted in repression of Oct4, Sox2 and Nanog in ΔNp63-/- epidermal cells and rescue differentiation defects. Loss of ΔNp63 resulted in pluripotency that caused defect in proper differentiation and stem cell like phenotype. This led me to culture the ΔNp63-/- epidermal cells in neuronal cell culture media in order to address whether restoration of DGCR8 can transform epidermal cells to neuronal cells. I found that DGCR8 restoration resulted in a change in cell fate. I also found that miR470 and miR145 play a role in the induction of pluripotency by repressing Oct4, Sox2 and Nanog. This indicates that ΔNp63 induces terminal differentiation through the regulation of DGCR8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genes of the basic helix-loop-helix transcription factor family have been implicated in many different developmental processes from neurogenesis to myogenesis. The recently cloned bHLH transcription factor, paraxis, has been found to be expressed in the paraxial mesoderm of the mouse suggesting a role for paraxis in the development of this mesodermal subtype which gives rise to the axial muscle, skeleton, and dermis of the embryo. In order to perform in vivo gain of function assays and obtain a better understanding of the possible roles of paraxis in mesodermal and somitic development, we have successfully identified homologues of paraxis in the frog, Xenopus laevis, where the process of mesodermal induction and development is best understood. The two homologues, Xparaxis-a and Xparaxis-b, are conserved with respect to their murine homologue in structure and expression within the embryo. Xparaxis genes are expressed immediately after gastrulation in the paraxial mesoderm of Xenopus embryos and are down regulated in the myotome of the mature somite with continued expression in the undifferentiated dermatome. Overexpression of Xparaxis-b in Xenopus embryos caused defects in the organization and morphology of the somites. This effect was not dependent on DNA binding of Xparaxis but is likely due to its dimerization with other bHLH factors. Co-injections with XE12 did not diminish the effects indicating that the defects were not the result of limiting amounts of XE12. We also demonstrated that Xparaxis does not cause obvious defects in the cell adhesions and movements required for proper mesoderm patterning during gastrulation. The paraxis proteins also lacked the ability to activate transcription as GAL4 fusion proteins in a GAL4 reporter assay, indicating that the genes may function more as modulators of the activity of dimerization partners than as positively acting cell determination factors. In agreement with this, Xparaxis is regulated in response to other pathways of bHLH gene action, in that XE12 can activate Xparaxis-b, in vivo. In addition we show regulation of Xparaxis in response to mMyoD induced myogenesis pathways, again suggesting Xparaxis plays an important role in the patterning and organization of the paraxial mesoderm. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin-8 (IL-8), a proinflammatory cytokine produced by human monocytes, fibroblasts, and endothelial and epithelial cells, is effective not only on cells and tissues of human beings but also on those of several animal species. We investigated the importance of recombinant human IL-8 for the activation of canine neutrophils in vitro and its potential for inducing inflammation in vivo. Shape change (10(-9)-10(-7) M IL-8) and chemotaxis (10(-10)-10(-6) M IL-8) assays were used to determine the activation of canine neutrophils in vitro. Chemotaxis was induced by IL-8 at doses > 10(-8) M with a maximum response at 10(-6) M. A rapid shape change of comparable intensity was elicited by 10(-9)-10(-7) M IL-8. Thirty minutes after intradermal injection of 10(-9) moles of IL-8, emigration of neutrophils could be observed and became more intense at 60 minutes and 240 minutes, respectively. Zymosan-activated canine plasma, which served as a positive control, induced a rapid, massive, and more diffuse neutrophil accumulation, whereas the reaction after IL-8 was weaker but still significant. The neutrophil accumulation after IL-8 was preferentially located in perivenular areas of the deep dermis. Recombinant human IL-8 is capable of activating canine neutrophils in vitro and is able to generate significant neutrophil accumulation in dog skin. Its activity is lower than that in human, rabbit, and rat systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nail is the largest skin appendage. It grows continuously through life in a non-cyclical manner; its growth is not hormone-dependent. The nail of the middle finger of the dominant hand grows fastest with approximately 0.1 mm/day, whereas the big toe nail grows only 0.03-0.05 mm/d. The nails' size and shape vary characteristically from finger to finger and from toe to toe, for which the size and shape of the bone of the terminal phalanx is responsible. The nail apparatus consists of both epithelial and connective tissue components. The matrix epithelium is responsible for the production of the nail plate whereas the nail bed epithelium mediates firm attachment. The hyponychium is a specialized structure sealing the subungual space and allowing the nail plate to physiologically detach from the nail bed. The proximal nail fold covers most of the matrix. Its free end forms the cuticle which seals the nail pocket or cul-de-sac. The dermis of the matrix and nail bed is specialized with a morphogenetic potency. The proximal and lateral nail folds form a frame on three sides giving the nail stability and allowing it to grow out. The nail protects the distal phalanx, is an extremely versatile tool for defense and dexterity and increases the sensitivity of the tip of the finger. Nail apparatus, finger tip, tendons and ligaments of the distal interphalangeal joint form a functional unit and cannot be seen independently. The nail organ has only a certain number of reaction patterns that differ in many respects from hairy and palmoplantar skin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pododermatitis is frequent in captive flamingos worldwide, but little is known about the associated histopathologic lesions. Involvement of a papillomavirus or herpesvirus has been suspected. Histopathologic evaluation and viral assessment of biopsies from 19 live and 10 dead captive greater flamingos were performed. Selected samples were further examined by transmission electron microscopy and immunohistochemistry. Feet from 10 dead free-ranging greater flamingos were also evaluated. The histologic appearance of lesions of flamingos of increasing age was interpreted as the progression of pododermatitis. Mild histologic lesions were seen in a 3-week-old flamingo chick with no macroscopic lesions, and these were characterized by Micrococcus-like bacteria in the stratum corneum associated with exocytosis of heterophils. The inflammation associated with these bacteria may lead to further histologic changes: irregular columnar proliferations, papillary squirting, and dyskeratosis. In more chronic lesions, hydropic degeneration of keratinocytes, epidermal hyperplasia, and dyskeratosis were seen at the epidermis, as well as proliferation of new blood vessels and increased intercellular matrix in the dermis. Papillomavirus DNA was not identified in any of the samples, while herpesvirus DNA was seen only in a few cases; therefore, these viruses were not thought to be the cause of the lesions. Poor skin health through suboptimal husbandry may weaken the epidermal barrier and predispose the skin to invasion of Micrococcus-like bacteria. Histologic lesions were identified in very young flamingos with no macroscopic lesions; this is likely to be an early stage lesion that may progress to macroscopic lesions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whereas the genetic background of horn growth in cattle has been studied extensively, little is known about the morphological changes in the developing fetal horn bud. In this study we histologically analyzed the development of horn buds of bovine fetuses between ~70 and ~268 days of pregnancy and compared them with biopsies taken from the frontal skin of the same fetuses. In addition we compared the samples from the wild type (horned) fetuses with samples taken from the horn bud region of age-matched genetically hornless (polled) fetuses. In summary, the horn bud with multiple layers of vacuolated keratinocytes is histologically visible early in fetal life already at around day 70 of gestation and can be easily differentiated from the much thinner epidermis of the frontal skin. However, at the gestation day (gd) 212 the epidermis above the horn bud shows a similar morphology to the epidermis of the frontal skin and the outstanding layers of vacuolated keratinocytes have disappeared. Immature hair follicles are seen in the frontal skin at gd 115 whereas hair follicles below the horn bud are not present until gd 155. Interestingly, thick nerve bundles appear in the dermis below the horn bud at gd 115. These nerve fibers grow in size over time and are prominent shortly before birth. Prominent nerve bundles are not present in the frontal skin of wild type or in polled fetuses at any time, indicating that the horn bud is a very sensitive area. The samples from the horn bud region from polled fetuses are histologically equivalent to samples taken from the frontal skin in horned species. This is the first study that presents unique histological data on bovine prenatal horn bud differentiation at different developmental stages which creates knowledge for a better understanding of recent molecular findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human-engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All nonrecirculating resident memory T cells (TRM) expressed CD69, but most were CD4(+), CD103(-), and located in the dermis, in contrast to studies in mice. Both CD4(+) and CD8(+) CD103(+) TRM were enriched in the epidermis, had potent effector functions, and had a limited proliferative capacity compared to CD103(-) TRM. TRM of both types had more potent effector functions than recirculating T cells. We observed two distinct populations of recirculating T cells, CCR7(+)/L-selectin(+) central memory T cells (TCM) and CCR7(+)/L-selectin(-) T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions, and TMM were depleted more slowly from skin after alemtuzumab, suggesting that TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cutaneous collagenous vasculopathy (CCV) is a rare idiopathic microangiopathy of the cutaneous vasculature characterized histologically by the presence of dilated small blood vessels with flat endothelial cells and thickened walls containing hyaline material in the upper dermis. We report an elderly patient presenting with an extensive form of CCV involving the trunk, upper and lower limbs. She was treated with Multiplex PDL 595-nm/Nd:YAG 1,064-nm laser and optimized pulsed light. This approach, which has never been reported for CCV so far, resulted in a striking and almost complete clearance of the widespread lesions. We here review our knowledge about CCV and therapeutic options available with a survey of the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nail unit is the largest and a rather complex skin appendage. It is located on the dorsal aspect of the tips of fingers and toes and has important protective and sensory functions. Development begins in utero between weeks 7 and 8 and is fully formed at birth. For its correct development, a great number of signals are necessary. Anatomically, it consists of 4 epithelial components: the matrix that forms the nail plate; the nail bed that firmly attaches the plate to the distal phalanx; the hyponychium that forms a natural barrier at the physiological point of separation of the nail from the bed; and the eponychium that represents the undersurface of the proximal nail fold which is responsible for the formation of the cuticle. The connective tissue components of the matrix and nail bed dermis are located between the corresponding epithelia and the bone of the distal phalanx. Characteristics of the connective tissue include: a morphogenetic potency for the regeneration of their epithelia; the lateral and proximal nail folds form a distally open frame for the growing nail; and the tip of the digit has rich sensible and sensory innervation. The blood supply is provided by the paired volar and dorsal digital arteries. Veins and lymphatic vessels are less well defined. The microscopic anatomy varies from nail subregion to subregion. Several different biopsy techniques are available for the histopathological evaluation of nail alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Tissue engineering techniques offer a potential means to develop a tissue engineered construct (TEC) for the treatment of tissue and organ deficiencies. However, a lack of adequate vascularization is a limiting factor in the development of most viable engineered tissues. Vascular endothelial growth factor (VEGF) could aid in the development of a viable vascular network within TECs. The long-term goals of this research are to develop clinically relevant, appropriately vascularized TECs for use in humans. This project tested the hypothesis that the delivery of VEGF via controlled release from biodegradable microspheres would increase the vascular density and rate of angiogenesis within a model TEC. ^ Materials and methods. Biodegradable VEGF-encapsulated microspheres were manufactured using a novel method entitled the Solid Encapsulation/Single Emulsion/Solvent Extraction technique. Using a PLGA/PEG polymer blend, microspheres were manufactured and characterized in vitro. A model TEC using fibrin was designed for in vivo tissue engineering experimentation. At the appropriate timepoint, the TECs were explanted, and stained and quantified for CD31 using a novel semi-automated thresholding technique. ^ Results. In vitro results show the microspheres could be manufactured, stored, degrade, and release biologically active VEGF. The in vivo investigations revealed that skeletal muscle was the optimal implantation site as compared to dermis. In addition, the TECs containing fibrin with VEGF demonstrated significantly more angiogenesis than the controls. The TECs containing VEGF microspheres displayed a significant increase in vascular density by day 10. Furthermore, TECs containing VEGF microspheres had a significantly increased relative rate of angiogenesis from implantation day 5 to day 10. ^ Conclusions. A novel technique for producing microspheres loaded with biologically active proteins was developed. A defined concentration of microspheres can deliver a quantifiable level of VEGF with known release kinetics. A novel model TEC for in vivo tissue engineering investigations was developed. VEGF and VEGF microspheres stimulate angiogenesis within the model TEC. This investigation determined that biodegradable rhVEGF 165-encapsulated microspheres increased the vascular density and relative rate of angiogenesis within a model TEC. Future applications could include the incorporation of microvascular fragments into the model TEC and the incorporation of specific tissues, such as fat or bone. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pattern of expression of the pro$\alpha$2(I) collagen gene is highly tissue-specific in adult mice and shows its strongest expression in bones, tendons, and skin. Transgenic mice were generated harboring promoter fragments of the mouse pro$\alpha$2(I) collagen gene linked to the Escherichia coli $\beta$-galactosidase or firefly luciferase genes to examine the activity of these promoters during development. A region of the mouse pro$\alpha$2(I) collagen promoter between $-$2000 and +54 exhibited a pattern of $\beta$-galactosidase activity during embryonic development that corresponded to the expression pattern of the endogenous pro$\alpha$2(I) collagen gene as determined by in situ hybridization. A similar pattern of activity was also observed with much smaller promoter fragments containing either 500 or 350 bp of upstream sequence relative to the start of transcription. Embryonic regions expressing high levels of $\beta$-galactosidase activity included the valves of the developing heart, sclerotomes, meninges, limb buds, connective tissue fascia between muscle fibers, osteoblasts, tendon, periosteum, dermis, and peritoneal membranes. The pattern of $\beta$-galactosidase activity was similar to the extracellular immunohistochemical localization of transforming growth factor-$\beta$1 (TGF-$\beta$1). The $-$315 to $-$284 region of the pro$\alpha$2(I) collagen promoter was previously shown to mediate the stimulatory effects of TGF-$\beta$1 on the pro$\alpha$2(I) collagen promoter in DNA transfection experiments with cultured fibroblasts. A construct containing this sequence tandemly repeated 5$\sp\prime$ to both a very short $\alpha$2(I) collagen promoter ($-$40 to +54) and a heterologous minimal promoter showed preferential activity in tail and skin of 4-week old transgenic mice. The pattern of expression mimics that of the $-$350 to +54 pro$\alpha$2(I) collagen promoter linked to a luciferase reporter gene in transgenic mice. ^