990 resultados para deltaic sedimentation
Resumo:
Sediment accumulation rates, computed using agesediment thickness curves obtained from DSDP cores, are rarely corrected for compaction or bedding attitude to better approximate true sediment accumulation rates (c.f. van Andel et al., 1975; Davies et al., 1977; and Whitman and Davies, 1979). Variations with depth in either of these factors can hinder interpreting relative rates of sedimentary processes associated with a particular depositional environment. This problem becomes particularly relevant for convergent margin sediments, which often display variable bedding attitudes and pronounced changes in porosity, bulk density, and other parameters related to the compaction process at shallow depth. These rapid shallow changes render correlation of sedimentation rates within a single transect of holes very difficult. Two techniques have been applied to data collected from a transect of holes along the southwestern Mexico continental margin, DSDP Leg 66 (Fig. 1), to correct sediment accumulation rates for variations in compaction and bedding attitude. These corrections should help resolve true fluctuations in accumulation rates and their implications regarding convergent margin processes.
Resumo:
In this Initial Report of the Deep Sea Drilling Project, detailed studies of Sites 533 (gas hydrates) on the Blake Outer Ridge and 534 (oldest ocean history) in the Blake-Bahama Basin have provided answers to many geological and geophysical questions posed over the decade that deep drilling has been undertaken in this part of the western North Atlantic. The history of drilling and a historical review of key scientific accomplishments have been presented in the Introduction (Gradstein and Sheridan, this volume). In this final chapter we review highlights of new geological, geophysical and paleoceanographic interpretations presented in this volume, and offer a critical review of this information. We conclude with a listing of some outstanding problems and recommendations for future research, including data collection.
Resumo:
A zonation is presented for the oceanic late Middle Jurassic to Late Jurassic of the Atlantic Ocean. The oldest zone, the Stephenolithion bigotii Zone (subdivided into a Stephanolithion hexum Subzone and a Cyclagelosphaera margerelii Subzone), is middle Callovian to early Oxfordian. The Vagalapilla stradneri Zone is middle Oxfordian to Kimmeridgian. The Conusphaera mexicana Zone, subdivided into a lower Hexapodorhabdus cuvillieri Subzone and a Polycostella beckmannii Subzone, is the latest Kimmeridgian to Tithonian. Direct correlation of this zonation with the boreal zonation established for Britain and northern France (Barnard and Hay, 1974; Medd, 1982; Hamilton, 1982) is difficult because of poor preservation resulting in low diversity for the cored section at Site 534 and a lack of Tithonian marker species in the boreal realm. Correlations based on dinoflagellates and on nannofossils with stratotype sections (or regions) give somewhat different results. Dinoflagellates give generally younger ages, especially for the Oxfordian to Kimmeridgian part of the recovered section, than do nannofossils.
Resumo:
Oxygen and carbon stable isotope data of Pyrgo murrhina and flux rates of calcium carbonate in the bio- and magnetostratigraphically dated sediment sequence at DSDP Site 141 were used for a reconstruction of the deep-water circulation in the Northeast Atlantic during Late Miocene and Pliocene times. A distinct change towards reduced advection of deep water recorded near 5.4 Ma is contemporaneous with the cessation of the outflow of the saline Mediterranean water into the Atlantic. During the Pliocene, between 4.5 and 2.75 Ma and between 2.1 and 1.8 Ma, North Atlantic Deep Water (NADW) circulation was sluggish and Site 141 possibly influenced by Antarctic Bottom Water (AABW). Near 2.75 Ma, the advection of well-oxidized NADW was strongly intensified. This change is related to an onset of major Arctic ice growth and/or a major cooling of NADW.
Resumo:
Triassic (Carnian-Rhaetian) continental margin sediments from the Wombat Plateau off northwest Australia (Sites 759, 760, 761, and 764) contain mainly detrital organic matter of terrestrial higher plant origin. Although deposited in a nearshore deltaic environment, little liptinitic material was preserved. The dominant vitrinites and inertinites are hydrogen-lean, and the small quantities of extractable bitumen contain w-alkanes and bacterial hopanoid hydrocarbons as the most dominant single gas-chromatography-amenable compounds. Lower Cretaceous sediments on the central Exmouth Plateau (Sites 762 and 763) farther south in general have an organic matter composition similar to that in the Wombat Plateau sediments with the exception of a smaller particle size of vitrinites and inertinites, indicating more distal transport and probably deposition in deeper water. Nevertheless, organic matter preservation is slightly better than in the Triassic sediments. Long-chain fatty acids, as well as aliphatic ketones and alcohols, are common constituents in the Lower Cretaceous sediments in addition to n-alkanes and hopanoid hydrocarbons. Thin, black shale layers at the Cenomanian/Turonian boundary, although present at several sites (Sites 762 and 763 on the Exmouth Plateau, Site 765 in the Argo Abyssal Plain, and Site 766 on the continental margin of the Gascoyne Abyssal Plain), are particularly enriched in organic matter only at Site 763 (up to 26%). These organic-matter-rich layers contain mainly bituminite of probable fecal-pellet origin. Considering the high organic carbon content, the moderate hydrogen indices of 350-450 milligrams of hydrocarbon-type material per gram of Corg, the maceral composition, and the low sedimentation rates in the middle Cretaceous, we suggest that these black shales were accumulated in an area of oxygen-depleted bottom-water mass (oceanwide reduced circulation?) underlying an oxygen-rich water column (in which most of the primary biomass other than fecal pellets is destroyed) and a zone of relatively high bioproductivity. Differences in organic matter accumulation at the Cenomanian/Turonian boundary at different sites off northwest Australia are ascribed to regional variations in primary bioproductivity.
Resumo:
We use digital seismic reflection profiles within a 1° * 1° survey area on the Cocos Ridge (COCOS6N) to study the extent and timing of sedimentation and sediment redistribution on the Cocos Ridge. The survey was performed to understand how sediment focusing might affect paleoceanographic flux measurements in a region known for significant downslope transport. COCOS6N contains ODP Site 1241 to ground truth the seismic stratigraphy, and there is a seamount ridge along the base of the ridge that forms a basin (North Flank Basin) to trap sediments transported downslope. Using the Site 1241 seismic stratigraphy and densities extrapolated from wireline logging, we document mass accumulation rates (MARs) since 11.2 Ma. The average sediment thickness at COCOS6N is 196 m, ranging from outcropping basalt at the ridge crest to ~ 400 m at North Flank Basin depocenters. Despite significant sediment transport, the average sedimentation over the entire area is well correlated to sediment fluxes at Site 1241. A low mass accumulation rate (MAR) interval is associated with the 'Miocene carbonate crash' interval even though COCOS6N was at the equator at that time and relatively shallow. Highest MAR occurs within the late Miocene-early Pliocene biogenic bloom interval. Lowest average MAR is in the Pleistocene, as plate tectonic motions caused COCOS6N to leave the equatorial productivity zone. The Pliocene and Pleistocene also exhibit higher loss of sediment from the ridge crest and transport to North Flank Basin. Higher tidal energy on the ridge caused by tectonic movement toward the margin increased sediment focusing in the younger section.
Resumo:
More than 2000 turbidite, debris-flow, and slump deposits recovered at Site 823 record the history of the Queensland Trough since the middle Miocene and provide new insights about turbidites, debris flow, and slump deposits (herein termed gravity deposits). Changes in the composition and nature of gravity deposits through time can be related to tectonic movements, fluctuations in eustatic sea level, and sedimentological factors. The Queensland Trough is a long, relatively narrow, structural depression that formed as a result of Cretaceous to Tertiary rifting of the northeastern Australia continental margin. Thus, tectonics established the geometry of this marginal basin, and its steep slopes set the stage for repeated slope failures. Seismic data indicate that renewed faulting, subsidence, and associated tectonic tilting occurred during the early late Miocene (continuing into the early Pliocene), resulting in unstable slopes that were prone to slope failures and to generation of gravity deposits. Tectonic subsidence, together with a second-order eustatic highstand, resulted in platform drowning during the late Miocene. The composition of turbidites reflects their origin and provides insights about the nature of sedimentation on adjacent shelf areas. During relative highstands and times of platform drowning, planktonic foraminifers were reworked from slopes and/or drowned shelves and were redeposited in turbidites. During relative lowstands, quartz and other terrigenous sediment was shed into the basin. Quartzose turbidites and clay-rich hemipelagic muds also can record increased supply of terrigenous sediment from mainland Australia. Limestone fragments were eroded from carbonate platforms until the drowned platforms were buried under hemipelagic sediments following the late Miocene drowning event. Bioclastic grains and neritic foraminifers were reworked from neritic shelves during relative lowstands. During the late Pliocene (2.6 Ma), the increased abundance of bioclasts and quartz in turbidites signaled the shallowing and rejuvenation of the northeastern Australia continental shelf. However, a one-for-one relationship cannot be recognized between eustatic sea-level fluctuations and any single sedimentologic parameter. Perhaps, tectonism and sedimentological factors along the Queensland Trough played an equally important role in generating gravity deposits. Turbidites and other gravity deposits (such as those at Site 823) do not necessarily represent submarine fan deposits, particularly if they are composed of hemipelagic sediments reworked from drowned platforms and slopes. When shelves are drowned and terrigenous sediment is not directly supplied by nearby rivers/point sources, muddy terrigenous sediments blanket the entire slope and basin, rather than forming localized fans. Slope failures affect the entire slope, rather than localized submarine canyons. Slopes may become destabilized as a result of tectonic activity, inherent sediment weaknesses, and/or during relative sea-level lowstands. For this reason, sediment deposits in this setting reflect tectonic and eustatic events that caused slope instabilities, rather than migration of different submarine fan facies.
Resumo:
A 560-meter-thick sequence of Cenomanian through Pleistocene sediments cored at DSDP Site 462 in the Nauru Basin overlies a 500-meter-thick complex unit of altered basalt flows, diabase sills, and thin intercalated volcaniclastic sediments. The Upper Cretaceous and Cenozoic sediments contain a high proportion of calcareous fossils, although the site has apparently been below the calcite compensation depth (CCD) from the late Mesozoic to the Pleistocene. This fact and the contemporaneous fluctuations of the calcite and opal accumulation rates suggest an irregular influx of displaced pelagic sediments from the shallow margins of the basin to its center, resulting in unusually high overall sedimentation rates for such a deep (5190 m) site. Shallow-water benthic fossils and planktonic foraminifers both occur as reworked materials, but usually are not found in the same intervals of the sediment section. We interpret this as recording separate erosional interludes in the shallow-water and intermediate-water regimes. Lower and upper Cenozoic hiatuses also are believed to have resulted from mid-water events. High accumulation rates of volcanogenic material during Santonian time suggest a corresponding significant volcanic episode. The coincidence of increased carbonate accumulation rates during the Campanian and displacement of shallow-water fossils during the late Campanian-early Maestrichtian with the volcanic event implies that this early event resulted in formation of the island chains around the Nauru Basin, which then served as platforms for initial carbonate deposition.
Resumo:
Although scientific evidence prior to that from ODP Leg 119 indicates the presence of an ice sheet on East Antarctica by at least the earliest Oligocene, the question as to the size and stability of that initial ice sheet is still contested. Current hypotheses include (1) the presence of a small ice sheet in the earliest Oligocene with stepwise growth during the Neogene, (2) the presence of a continental-sized ice sheet in the late middle Eocene with no major evidence of subsequent deglaciation, and (3) the presence of glacial ice in the earliest Oligocene with a major ice sheet during the mid-Oligocene, followed by growth and decay of several ice sheets with characteristics similar to the temperate ice sheets of the Pleistocene of North America but with changes over a longer time scale (millions of years vs. 100,000 yr). Principal results from Leg 119 suggest the presence of significant late middle and late Eocene glaciation in East Antarctica and the presence of a continental-size ice sheet in East Antarctica during the earliest Oligocene. Although the Leg 119 results provide only glimpses of the Neogene glacial history of East Antarctica, they do provide evidence of fluctuations in the extent of the ice sheet and the waxing and waning of glaciers across the Prydz Bay shelf during the later part of the late Miocene and Pliocene.