965 resultados para deduced optical model parameters
Resumo:
A study was performed on non-Gaussian statistics of an optical soliton in the presence of amplified spontaneous emission. An approach based on the Fokker-Planck equation was applied to study the optical soliton parameters in the presence of additive noise. The rigorous method not only allowed to reproduce and justify the classical Gordon-Haus formula but also led to new exact results.
Resumo:
This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.
Resumo:
We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.
Detecting Precipitation Climate Changes: An Approach Based on a Stochastic Daily Precipitation Model
Resumo:
2002 Mathematics Subject Classification: 62M10.
Resumo:
The correlated probit model is frequently used for multiple ordered data since it allows to incorporate seamlessly different correlation structures. The estimation of the probit model parameters based on direct maximization of the limited information maximum likelihood is a numerically intensive procedure. We propose an extension of the EM algorithm for obtaining maximum likelihood estimates for a correlated probit model for multiple ordinal outcomes. The algorithm is implemented in the free software environment for statistical computing and graphics R. We present two simulation studies to examine the performance of the developed algorithm. We apply the model to data on 121 women with cervical or endometrial cancer. Patients developed normal tissue reactions as a result of post-operative external beam pelvic radiotherapy. In this work we focused on modeling the effects of a genetic factor on early skin and early urogenital tissue reactions and on assessing the strength of association between the two types of reactions. We established that there was an association between skin reactions and polymorphism XRCC3 codon 241 (C>T) (rs861539) and that skin and urogenital reactions were positively correlated. ACM Computing Classification System (1998): G.3.
Resumo:
2010 Mathematics Subject Classification: 62J99.
Resumo:
In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.
Resumo:
Markovian models are widely used to analyse quality-of-service properties of both system designs and deployed systems. Thanks to the emergence of probabilistic model checkers, this analysis can be performed with high accuracy. However, its usefulness is heavily dependent on how well the model captures the actual behaviour of the analysed system. Our work addresses this problem for a class of Markovian models termed discrete-time Markov chains (DTMCs). We propose a new Bayesian technique for learning the state transition probabilities of DTMCs based on observations of the modelled system. Unlike existing approaches, our technique weighs observations based on their age, to account for the fact that older observations are less relevant than more recent ones. A case study from the area of bioinformatics workflows demonstrates the effectiveness of the technique in scenarios where the model parameters change over time.
Resumo:
This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.
Resumo:
Research on the perception of temporal order uses either temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks, in both of which two stimuli are presented with some temporal delay and observers must judge the order of presentation. Results generally differ across tasks, raising concerns about whether they measure the same processes. We present a model including sensory and decisional parameters that places these tasks in a common framework that allows studying their implications on observed performance. TOJ tasks imply specific decisional components that explain the discrepancy of results obtained with TOJ and SJ tasks. The model is also tested against published data on audiovisual temporal-order judgments, and the fit is satisfactory, although model parameters are more accurately estimated with SJ tasks. Measures of latent point of subjective simultaneity and latent sensitivity are defined that are invariant across tasks by isolating the sensory parameters governing observed performance, whereas decisional parameters vary across tasks and account for observed differences across them. Our analyses concur with other evidence advising against the use of TOJ tasks in research on perception of temporal order.
Resumo:
The goal of my Ph.D. thesis is to enhance the visualization of the peripheral retina using wide-field optical coherence tomography (OCT) in a clinical setting.
OCT has gain widespread adoption in clinical ophthalmology due to its ability to visualize the diseases of the macula and central retina in three-dimensions, however, clinical OCT has a limited field-of-view of 300. There has been increasing interest to obtain high-resolution images outside of this narrow field-of-view, because three-dimensional imaging of the peripheral retina may prove to be important in the early detection of neurodegenerative diseases, such as Alzheimer's and dementia, and the monitoring of known ocular diseases, such as diabetic retinopathy, retinal vein occlusions, and choroid masses.
Before attempting to build a wide-field OCT system, we need to better understand the peripheral optics of the human eye. Shack-Hartmann wavefront sensors are commonly used tools for measuring the optical imperfections of the eye, but their acquisition speed is limited by their underlying camera hardware. The first aim of my thesis research is to create a fast method of ocular wavefront sensing such that we can measure the wavefront aberrations at numerous points across a wide visual field. In order to address aim one, we will develop a sparse Zernike reconstruction technique (SPARZER) that will enable Shack-Hartmann wavefront sensors to use as little as 1/10th of the data that would normally be required for an accurate wavefront reading. If less data needs to be acquired, then we can increase the speed at which wavefronts can be recorded.
For my second aim, we will create a sophisticated optical model that reproduces the measured aberrations of the human eye. If we know how the average eye's optics distort light, then we can engineer ophthalmic imaging systems that preemptively cancel inherent ocular aberrations. This invention will help the retinal imaging community to design systems that are capable of acquiring high resolution images across a wide visual field. The proposed model eye is also of interest to the field of vision science as it aids in the study of how anatomy affects visual performance in the peripheral retina.
Using the optical model from aim two, we will design and reduce to practice a clinical OCT system that is capable of imaging a large (800) field-of-view with enhanced visualization of the peripheral retina. A key aspect of this third and final aim is to make the imaging system compatible with standard clinical practices. To this end, we will incorporate sensorless adaptive optics in order to correct the inter- and intra- patient variability in ophthalmic aberrations. Sensorless adaptive optics will improve both the brightness (signal) and clarity (resolution) of features in the peripheral retina without affecting the size of the imaging system.
The proposed work should not only be a noteworthy contribution to the ophthalmic and engineering communities, but it should strengthen our existing collaborations with the Duke Eye Center by advancing their capability to diagnose pathologies of the peripheral retinal.
Resumo:
Li-ion batteries have been widely used in electric vehicles, and battery internal state estimation plays an important role in the battery management system. However, it is technically challenging, in particular, for the estimation of the battery internal temperature and state-ofcharge (SOC), which are two key state variables affecting the battery performance. In this paper, a novel method is proposed for realtime simultaneous estimation of these two internal states, thus leading to a significantly improved battery model for realtime SOC estimation. To achieve this, a simplified battery thermoelectric model is firstly built, which couples a thermal submodel and an electrical submodel. The interactions between the battery thermal and electrical behaviours are captured, thus offering a comprehensive description of the battery thermal and electrical behaviour. To achieve more accurate internal state estimations, the model is trained by the simulation error minimization method, and model parameters are optimized by a hybrid optimization method combining a meta-heuristic algorithm and the least square approach. Further, timevarying model parameters under different heat dissipation conditions are considered, and a joint extended Kalman filter is used to simultaneously estimate both the battery internal states and time-varying model parameters in realtime. Experimental results based on the testing data of LiFePO4 batteries confirm the efficacy of the proposed method.
Resumo:
Mathematical models are increasingly used in environmental science thus increasing the importance of uncertainty and sensitivity analyses. In the present study, an iterative parameter estimation and identifiability analysis methodology is applied to an atmospheric model – the Operational Street Pollution Model (OSPMr). To assess the predictive validity of the model, the data is split into an estimation and a prediction data set using two data splitting approaches and data preparation techniques (clustering and outlier detection) are analysed. The sensitivity analysis, being part of the identifiability analysis, showed that some model parameters were significantly more sensitive than others. The application of the determined optimal parameter values was shown to succesfully equilibrate the model biases among the individual streets and species. It was as well shown that the frequentist approach applied for the uncertainty calculations underestimated the parameter uncertainties. The model parameter uncertainty was qualitatively assessed to be significant, and reduction strategies were identified.
Resumo:
Semiconductor lasers have the potential to address a number of critical applications in advanced telecommunications and signal processing. These include applications that require pulsed output that can be obtained from self-pulsing and mode-locked states of two-section devices with saturable absorption. Many modern applications place stringent performance requirements on the laser source, and a thorough understanding of the physical mechanisms underlying these pulsed modes of operation is therefore highly desirable. In this thesis, we present experimental measurements and numerical simulations of a variety of self-pulsation phenomena in two-section semiconductor lasers with saturable absorption. Our theoretical and numerical results will be based on rate equations for the field intensities and the carrier densities in the two sections of the device, and we establish typical parameter ranges and assess the level of agreement with experiment that can be expected from our models. For each of the physical examples that we consider, our model parameters are consistent with the physical net gain and absorption of the studied devices. Following our introductory chapter, the first system that we consider is a two-section Fabry-Pérot laser. This example serves to introduce our method for obtaining model parameters from the measured material dispersion, and it also allows us to present a detailed discussion of the bifurcation structure that governs the appearance of selfpulsations in two-section devices. In the following two chapters, we present two distinct examples of experimental measurements from dual-mode two-section devices. In each case we have found that single mode self-pulsations evolve into complex coupled dualmode states following a characteristic series of bifurcations. We present optical and mode resolved power spectra as well as a series of characteristic intensity time traces illustrating this progression for each example. Using the results from our study of a twosection Fabry-Pérot device as a guide, we find physically appropriate model parameters that provide qualitative agreement with our experimental results. We highlight the role played by material dispersion and the underlying single mode self-pulsing orbits in determining the observed dynamics, and we use numerical continuation methods to provide a global picture of the governing bifurcation structure. In our concluding chapter we summarise our work, and we discuss how the presented results can inform the development of optimised mode-locked lasers for performance applications in integrated optics.
Resumo:
A deterministic model of tuberculosis in Cameroon is designed and analyzed with respect to its transmission dynamics. The model includes lack of access to treatment and weak diagnosis capacity as well as both frequency-and density-dependent transmissions. It is shown that the model is mathematically well-posed and epidemiologically reasonable. Solutions are non-negative and bounded whenever the initial values are non-negative. A sensitivity analysis of model parameters is performed and the most sensitive ones are identified by means of a state-of-the-art Gauss-Newton method. In particular, parameters representing the proportion of individuals having access to medical facilities are seen to have a large impact on the dynamics of the disease. The model predicts that a gradual increase of these parameters could significantly reduce the disease burden on the population within the next 15 years.