991 resultados para declarative temporal logic programming
Resumo:
Liver diseases have severe patients’ consequences, being one of the main causes of premature death. These facts reveal the centrality of one`s daily habits, and how important it is the early diagnosis of these kind of illnesses, not only to the patients themselves, but also to the society in general. Therefore, this work will focus on the development of a diagnosis support system to these kind of maladies, built under a formal framework based on Logic Programming, in terms of its knowledge representation and reasoning procedures, complemented with an approach to computing grounded on Artificial Neural Networks.
Resumo:
Machine learning, inductive logic programming, search
Resumo:
Propositionalization, Inductive Logic Programming, Multi-Relational Data Mining
Resumo:
We present a two-level model of concurrent communicating systems (CCS) to serve as a basis formachine consciousness. A language implementing threads within logic programming is ¯rstintroduced. This high-level framework allows for the de¯nition of abstract processes that can beexecuted on a virtual machine. We then look for a possible grounding of these processes into thebrain. Towards this end, we map abstract de¯nitions (including logical expressions representingcompiled knowledge) into a variant of the pi-calculus. We illustrate this approach through aseries of examples extending from a purely reactive behavior to patterns of consciousness.
Resumo:
Peer-reviewed
Resumo:
In the last years there has been an increasing demand of a variety of logical systems, prompted mostly by applications of logic in AI, logic programming and other related areas. Labeled Deductive Systems (LDS) were developed as a flexible methodology to formalize such a kind of complex logical systems. In the last decade, defeasible argumentation has proven to be a confluence point for many approaches to formalizing commonsense reasoning. Different formalisms have been developed, many of them sharing common features. This paper presents a formalization of an LDS for defensible argumentation, in which the main issues concerning defeasible argumentation are captured within a unified logical framework. The proposed framework is defined in two stages. First, defeasible inference will be formalized by characterizing an argumentative LDS. That system will be then extended in order to capture conflict among arguments using a dialectical approach. We also present some logical properties emerging from the proposed framework, discussing also its semantical characterization.
Resumo:
We describe a compositional framework, together with its supporting toolset, for hardware/software co-design. Our framework is an integration of a formal approach within a traditional design flow. The formal approach is based on Interval Temporal Logic and its executable subset, Tempura. Refinement is the key element in our framework because it will derive from a single formal specification of the system the software and hardware parts of the implementation, while preserving all properties of the system specification. During refinement simulation is used to choose the appropriate refinement rules, which are applied automatically in the HOL system. The framework is illustrated with two case studies. The work presented is part of a UK collaborative research project between the Software Technology Research Laboratory at the De Montfort University and the Oxford University Computing Laboratory.
Resumo:
Identifying the correct sense of a word in context is crucial for many tasks in natural language processing (machine translation is an example). State-of-the art methods for Word Sense Disambiguation (WSD) build models using hand-crafted features that usually capturing shallow linguistic information. Complex background knowledge, such as semantic relationships, are typically either not used, or used in specialised manner, due to the limitations of the feature-based modelling techniques used. On the other hand, empirical results from the use of Inductive Logic Programming (ILP) systems have repeatedly shown that they can use diverse sources of background knowledge when constructing models. In this paper, we investigate whether this ability of ILP systems could be used to improve the predictive accuracy of models for WSD. Specifically, we examine the use of a general-purpose ILP system as a method to construct a set of features using semantic, syntactic and lexical information. This feature-set is then used by a common modelling technique in the field (a support vector machine) to construct a classifier for predicting the sense of a word. In our investigation we examine one-shot and incremental approaches to feature-set construction applied to monolingual and bilingual WSD tasks. The monolingual tasks use 32 verbs and 85 verbs and nouns (in English) from the SENSEVAL-3 and SemEval-2007 benchmarks; while the bilingual WSD task consists of 7 highly ambiguous verbs in translating from English to Portuguese. The results are encouraging: the ILP-assisted models show substantial improvements over those that simply use shallow features. In addition, incremental feature-set construction appears to identify smaller and better sets of features. Taken together, the results suggest that the use of ILP with diverse sources of background knowledge provide a way for making substantial progress in the field of WSD.
Resumo:
An extended version of HIER, a query-the-user facility for expert systems is presented. HIER was developed to run over Prolog programs, and has been incorporated to systems that support the design of large and complex applications. The framework of the extended version is described,; as well as the major features of the implementation. An example is included to illustrate the use of the tool, involving the design of a specific database application.
Resumo:
Learning to program or master a programming language is not an easy task, and the base of process should by study Logic Programming, beginning to learning through the development of pseudocodes, algorithms and flowcharts, for, techniques that facilitate the construction and understanding of what you want to accomplish, to that is subsequently developed or elaborated a program. Reflecting on the learning of Logic Programming, this article presents information about software SCRATCH in relation to logic (pseudocodes), and how it provides support to the understanding of student learning in this course.
Resumo:
Dalla necessità di risolvere il problema della disambiguazione di un insieme di autori messo a disposizione dall'Università di Bologna, il Semantic Lancet, è nata l'idea di progettare un algoritmo di disambiguazione in grado di adattarsi, in caso di bisogno, a qualsiasi tipo di lista di autori. Per la fase di testing dell'algoritmo è stato utilizzato un dataset generato (11724 autori di cui 1295 coppie da disambiguare) dalle informazioni disponibili dal "database systems and logic programming" (DBLP), in modo da essere il più etereogeneo possibile, cioè da contenere il maggior numero di casi di disambiguazione possibile. Per i primi test di sbarramento è stato definito un algoritmo alternativo discusso nella sezione 4.3 ottenendo una misura di esattezza dell'1% ed una di completezza dell'81%. L'algoritmo proposto impostato con il modello di configurazione ha ottenuto invece una misura di esattezza dell'81% ed una di completezza del 70%, test discusso nella sezione 4.4. Successivamente l'algoritmo è stato testato anche su un altro dataset: Semantic Lancet (919 autori di cui 34 coppie da disambiguare), ottenendo, grazie alle dovute variazioni del file di configurazione, una misura di esattezza del 84% e una di completezza del 79%, discusso nella sezione 4.5.
Resumo:
Since the early days of logic programming, researchers in the field realized the potential for exploitation of parallelism present in the execution of logic programs. Their high-level nature, the presence of nondeterminism, and their referential transparency, among other characteristics, make logic programs interesting candidates for obtaining speedups through parallel execution. At the same time, the fact that the typical applications of logic programming frequently involve irregular computations, make heavy use of dynamic data structures with logical variables, and involve search and speculation, makes the techniques used in the corresponding parallelizing compilers and run-time systems potentially interesting even outside the field. The objective of this article is to provide a comprehensive survey of the issues arising in parallel execution of logic programming languages along with the most relevant approaches explored to date in the field. Focus is mostly given to the challenges emerging from the parallel execution of Prolog programs. The article describes the major techniques used for shared memory implementation of Or-parallelism, And-parallelism, and combinations of the two. We also explore some related issues, such as memory management, compile-time analysis, and execution visualization.
Resumo:
Studying independence of goals has proven very useful in the context of logic programming. In particular, it has provided a formal basis for powerful automatic parallelization tools, since independence ensures that two goals may be evaluated in parallel while preserving correctness and eciency. We extend the concept of independence to constraint logic programs (CLP) and prove that it also ensures the correctness and eciency of the parallel evaluation of independent goals. Independence for CLP languages is more complex than for logic programming as search space preservation is necessary but no longer sucient for ensuring correctness and eciency. Two additional issues arise. The rst is that the cost of constraint solving may depend upon the order constraints are encountered. The second is the need to handle dynamic scheduling. We clarify these issues by proposing various types of search independence and constraint solver independence, and show how they can be combined to allow dierent optimizations, from parallelism to intelligent backtracking. Sucient conditions for independence which can be evaluated \a priori" at run-time are also proposed. Our study also yields new insights into independence in logic programming languages. In particular, we show that search space preservation is not only a sucient but also a necessary condition for ensuring correctness and eciency of parallel execution.
Resumo:
Expert systems for decision support have recently been successfully introduced in road transport management. In this paper, we apply three state-of-the art ILP systems to learn how to detect traffic problems.
Resumo:
The most successful unfolding rules used nowadays in the partial evaluation of logic programs are based on well quasi orders (wqo) applied over (covering) ancestors, i.e., a subsequence of the atoms selected during a derivation. Ancestor (sub)sequences are used to increase the specialization power of unfolding while still guaranteeing termination and also to reduce the number of atoms for which the wqo has to be checked. Unfortunately, maintaining the structure of the ancestor relation during unfolding introduces significant overhead. We propose an efficient, practical local unfolding rule based on the notion of covering ancestors which can be used in combination with a wqo and allows a stack-based implementation without losing any opportunities for specialization. Using our technique, certain non-leftmost unfoldings are allowed as long as local unfolding is performed, i.e., we cover depth-first strategies. To deal with practical programs, we propose assertion-based techniques which allow our approach to treat programs that include (Prolog) built-ins and external predicates in a very extensible manner, for the case of leftmost unfolding. Finally, we report on our mplementation of these techniques embedded in a practical partial evaluator, which shows that our techniques, in addition to dealing with practical programs, are also significantly more efficient in time and somewhat more efficient in memory than traditional tree-based implementations. To appear in Theory and Practice of Logic Programming (TPLP).