996 resultados para decision errors
Resumo:
Since the last decade research in Group Decision Making area have been focus in the building of meeting rooms that could support the decision making task and improve the quality of those decisions. However the emergence of Ambient Intelligence concept contributes with a new perspective, a different way of viewing traditional decision rooms. In this paper we will present an overview of Smart Decision Rooms providing Intelligence to the meeting environment, and we will also present LAID, an Ambient Intelligence Environment oriented to support Group Decision Making and some of the software tools that we already have installed in this environment.
Resumo:
Group decision making plays an important role in organizations, especially in the present-day economy that demands high-quality, yet quick decisions. Group decision-support systems (GDSSs) are interactive computer-based environments that support concerted, coordinated team efforts toward the completion of joint tasks. The need for collaborative work in organizations has led to the development of a set of general collaborative computer-supported technologies and specific GDSSs that support distributed groups (in time and space) in various domains. However, each person is unique and has different reactions to various arguments. Many times a disagreement arises because of the way we began arguing, not because of the content itself. Nevertheless, emotion, mood, and personality factors have not yet been addressed in GDSSs, despite how strongly they influence results. Our group’s previous work considered the roles that emotion and mood play in decision making. In this article, we reformulate these factors and include personality as well. Thus, this work incorporates personality, emotion, and mood in the negotiation process of an argumentbased group decision-making process. Our main goal in this work is to improve the negotiation process through argumentation using the affective characteristics of the involved participants. Each participant agent represents a group decision member. This representation lets us simulate people with different personalities. The discussion process between group members (agents) is made through the exchange of persuasive arguments. Although our multiagent architecture model4 includes two types of agents—the facilitator and the participant— this article focuses on the emotional, personality, and argumentation components of the participant agent.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
Decision Making is one of the most important activities of the human being. Nowadays decisions imply to consider many different points of view, so decisions are commonly taken by formal or informal groups of persons. Groups exchange ideas or engage in a process of argumentation and counter-argumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. Group Decision Making is a social activity in which the discussion and results consider a combination of rational and emotional aspects. In this paper we will present a Smart Decision Room, LAID (Laboratory of Ambient Intelligence for Decision Making). In LAID environment it is provided the support to meeting room participants in the argumentation and decision making processes, combining rational and emotional aspects.
Resumo:
This paper aims to present a multi-agent model for a simulation, whose goal is to help one specific participant of multi-criteria group decision making process.This model has five main intervenient types: the human participant, who is using the simulation and argumentation support system; the participant agents, one associated to the human participant and the others simulating the others human members of the decision meeting group; the directory agent; the proposal agents, representing the different alternatives for a decision (the alternatives are evaluated based on criteria); and the voting agent responsiblefor all voting machanisms.At this stage it is proposed a two phse algorithm. In the first phase each participantagent makes his own evaluation of the proposals under discussion, and the voting agent proposes a simulation of a voting process.In the second phase, after the dissemination of the voting results,each one ofthe partcipan agents will argue to convince the others to choose one of the possible alternatives. The arguments used to convince a specific participant are dependent on agent knowledge about that participant. This two-phase algorithm is applied iteratively.
Resumo:
In this paper a new free flight instrument is presented. The instrument named FlyMaster distinguishes from others not only at hardware level, since it is the first one based on a PDA and with an RF interface for wireless sensors, but also at software level once its structure was developed following some guidelines from Ambient Intelligence and ubiquitous and context aware mobile computing. In this sense the software has several features which avoid pilot intervention during flight. Basically, the FlyMaster adequate the displayed information to each flight situation. Furthermore, the FlyMaster has its one way of show information.
Resumo:
There is an undeniable positive effect of innovation for both firms and the economy, with particular regards to the financial performance of firms. However, there is an important role of the decision making process for the allocation of resources to finance the innovation process. The aim of this paper is to understand what factors explain the decision making process in innovation activities of Portuguese firms. This is an empirical study, based on the modern theoretical approaches, which has relied on five key aspects for innovation: barriers, sources, cooperation, funding; and the decision making process. Primary data was collected through surveys to firms that have applied for innovation programmes within the Portuguese innovation agency. Univariate and multivariate statistical techniques were used. Our results suggest that the factors that mostly influence the Portuguese firms’ innovation decision-making processes are economical and financial (namely those related to profit increase and labour costs reduction).
Resumo:
Knowledge is central to the modern economy and society. Indeed, the knowledge society has transformed the concept of knowledge and is more and more aware of the need to overcome the lack of knowledge when has to make options or address its problems and dilemmas. One’s knowledge is less based on exact facts and more on hypotheses, perceptions or indications. Even when we use new computational artefacts and novel methodologies for problem solving, like the use of Group Decision Support Systems (GDSSs), the question of incomplete information is in most of the situations marginalized. On the other hand, common sense tells us that when a decision is made it is impossible to have a perception of all the information involved and the nature of its intrinsic quality. Therefore, something has to be made in terms of the information available and the process of its evaluation. It is under this framework that a Multi-valued Extended Logic Programming language will be used for knowledge representation and reasoning, leading to a model that embodies the Quality-of-Information (QoI) and its quantification, along the several stages of the decision-making process. In this way, it is possible to provide a measure of the value of the QoI that supports the decision itself. This model will be here presented in the context of a GDSS for VirtualECare, a system aimed at sustaining online healthcare services.
Resumo:
This thesis presents the Fuzzy Monte Carlo Model for Transmission Power Systems Reliability based studies (FMC-TRel) methodology, which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states. This is followed by a remedial action algorithm, based on Optimal Power Flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. For the system states that cause load curtailment, an optimization approach is applied to reduce the probability of occurrence of these states while minimizing the costs to achieve that reduction. This methodology is of most importance for supporting the transmission system operator decision making, namely in the identification of critical components and in the planning of future investments in the transmission power system. A case study based on Reliability Test System (RTS) 1996 IEEE 24 Bus is presented to illustrate with detail the application of the proposed methodology.
Resumo:
In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.
Resumo:
The main objective of this work was to investigate the application of experimental design techniques for the identification of Michaelis-Menten kinetic parameters. More specifically, this study attempts to elucidate the relative advantages/disadvantages of employing complex experimental design techniques in relation to equidistant sampling when applied to different reactor operation modes. All studies were supported by simulation data of a generic enzymatic process that obeys to the Michaelis-Menten kinetic equation. Different aspects were investigated, such as the influence of the reactor operation mode (batch, fed-batch with pulse wise feeding and fed-batch with continuous feeding) and the experimental design optimality criteria on the effectiveness of kinetic parameters identification. The following experimental design optimality criteria were investigated: 1) minimization of the sum of the diagonal of the Fisher information matrix (FIM) inverse (A-criterion), 2) maximization of the determinant of the FIM (D-criterion), 3) maximization of the smallest eigenvalue of the FIM (E-criterion) and 4) minimization of the quotient between the largest and the smallest eigenvalue (modified E-criterion). The comparison and assessment of the different methodologies was made on the basis of the Cramér-Rao lower bounds (CRLB) error in respect to the parameters vmax and Km of the Michaelis-Menten kinetic equation. In what concerns the reactor operation mode, it was concluded that fed-batch (pulses) is better than batch operation for parameter identification. When the former operation mode is adopted, the vmax CRLB error is lowered by 18.6 % while the Km CRLB error is lowered by 26.4 % when compared to the batch operation mode. Regarding the optimality criteria, the best method was the A-criterion, with an average vmax CRLB of 6.34 % and 5.27 %, for batch and fed-batch (pulses), respectively, while presenting a Km’s CRLB of 25.1 % and 18.1 %, for batch and fed-batch (pulses), respectively. As a general conclusion of the present study, it can be stated that experimental design is justified if the starting parameters CRLB errors are inferior to 19.5 % (vmax) and 45% (Km), for batch processes, and inferior to 42 % and to 50% for fed-batch (pulses) process. Otherwise equidistant sampling is a more rational decision. This conclusion clearly supports that, for fed-batch operation, the use of experimental design is likely to largely improve the identification of Michaelis-Menten kinetic parameters.
Resumo:
The harmony between the stump and the prosthesis is critical to allow it to fulfill its function enabling an efficient gait. A well fitted socket, with an efficient and comfortable suspension, allows the amputee to continue their daily living activities, maintaining the stump functional, making this correlation between socket and suspension very important in the functionality of the prosthesis, mobility and overall satisfaction with the device. Of our knowledge, the quantitative correlation between all of these factors as not yet been assessed. Aim of study: Verify and confirm the process of decision-making for four different trans-tibial prostheses with suspension systems: Hypobaric(A), PIN(B), Classic Suction(C) and Vacuum Active –VASS(D) according data provided by gait efficiency (mlO2/kg/m) imagiology (pistonning) and amputee perception.
Resumo:
In visual sensor networks, local feature descriptors can be computed at the sensing nodes, which work collaboratively on the data obtained to make an efficient visual analysis. In fact, with a minimal amount of computational effort, the detection and extraction of local features, such as binary descriptors, can provide a reliable and compact image representation. In this paper, it is proposed to extract and code binary descriptors to meet the energy and bandwidth constraints at each sensing node. The major contribution is a binary descriptor coding technique that exploits the correlation using two different coding modes: Intra, which exploits the correlation between the elements that compose a descriptor; and Inter, which exploits the correlation between descriptors of the same image. The experimental results show bitrate savings up to 35% without any impact in the performance efficiency of the image retrieval task. © 2014 EURASIP.
Resumo:
Epidemiological studies have shown the effect of diet on the incidence of chronic diseases; however, proper planning, designing, and statistical modeling are necessary to obtain precise and accurate food consumption data. Evaluation methods used for short-term assessment of food consumption of a population, such as tracking of food intake over 24h or food diaries, can be affected by random errors or biases inherent to the method. Statistical modeling is used to handle random errors, whereas proper designing and sampling are essential for controlling biases. The present study aimed to analyze potential biases and random errors and determine how they affect the results. We also aimed to identify ways to prevent them and/or to use statistical approaches in epidemiological studies involving dietary assessments.
Resumo:
OBJECTIVE To analyze the sociocultural aspects involved in the decision-making process of vaccination in upper-class and highly educated families.METHODS A qualitative approach based on in-depth interviews with 15 couples from the city of Sao Paulo, Southeastern Brazil, falling into three categories: vaccinators, late or selective vaccinators, and nonvaccinators. The interpretation of produced empirical material was performed through content analysis.RESULTS The study showed diverse and particular aspects surrounding the three groups’ decisions whether to vaccinate their children. The vaccinators’ decision to vaccinate their children was spontaneous and raised no questions. Most late or selective vaccinators experienced a wide range of situations that were instrumental in the decision to delay or not apply certain vaccines. The nonvaccinator’s decision-making process expressed a broader context of both criticism of hegemonic obstetric practices in Brazil and access to information transmitted via social networks and the internet. The data showed that the problematization of vaccines (culminating in the decision to not vaccinate their children) occurred in the context of humanized birth, was protagonized by women and was greatly influenced by health information from the internet.CONCLUSIONS Sociocultural aspects of the singular Brazilian context and the contemporary society were involved in the decision-making on children’s vaccination. Understanding this process can provide a real basis for a deeper reflection on health and immunization practices in Brazil in light of the new contexts and challenges of the world today.