931 resultados para cytochrome P450
Resumo:
The coordination of the functional activities of intestinal CYP3A4 and P-gp in limiting the absorption of xenobiotics in Caco-2 cells was investigated. Growing Caco-2 cells were exposed to increasing concentrations of doxorubicin (1-2 μM) in plastic flasks to encourage a subpopulation of cells, that displayed an intrinsically higher multidrug resistance (mdr) phenotype than the parent cells, to survive and grow. Doxorubicin-exposed (hereinafter referred to as type I cells) and nonexposed Caco-2 cells (parent cells) on collagen-coated inserts were also treated with either 0 (control) or 0.25 μM 1α,25-dihydroxyvitamin D3 to promote cellular CYP3A4 expression. Increased P-gp protein expression, as detected by Western blotting, was noted in type I cells (213±54.35%) compared to that of parent cells (100±6.05%). Furthermore, they retained significantly less [3H]vincristine sulphate (p<0.05), a P-gp substrate, after efflux (272.89±11.86 fmol/mg protein) than the parent cells (381.39±61.82 fmol/mg protein). The expression of CYP3A4 in parental cells after 1α,25-dihydroxyvitamin D3 treatment was quantified to be 76.2±7.6 pmol/mg protein and comparable with that found in human jejunal enterocytes (70.0±20.0 pmol/mg protein). Type I cells, however, expressed a very low quantity of CYP3A4 both before and after the treatment that was beyond the minimum detection limit of Western blotting. Functionally, the rates of 1-hydroxylation of midazolam by CYP3A for both cell types ranged from 257.0±20.0 to 1057.0±46.0 pmol/min/mg protein. Type I cells, although having a higher P-gp expression and activity comparatively, metabolized midazolam less extensively than the parent cells. The results suggested that there were noncoordinated functional activities of intestinal CYP3A4 and P-gp in Caco-2 cells, although they both functioned independently to minimize intestinal epithelial absorption of xenobiotics. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association.
Resumo:
Many dietary factors have been associated with a decreased risk of developing cancer. One potential mechanism by which these factors, chemopreventors, protect against cancer may be via alteration of carcinogen metabolism. The broccoli constituent sulforaphane (1-isothiocyanate-4-methylsulinylbutane) (CH3-S0-(CH2)4-NCS) has been isolated as a potential inducer of phase II detoxification enzymes and also protects rodents against 9,10-dimethyl-1,2-benz[aJanthracene-induced mammary tumours. The ability of sulforaphane to also modulate phase I activation enzymes (cytochrome P450) (CYP450) was studied here. Sulforaphane was synthesised with an overall yield of 15%, essentially via 1-methylsulfinylphthalimidobutane, which was oxidised to the sulfoxide moiety. Deprotective removal of phthalimide yielded the amine, which was converted into sulforaphane by reaction with N,N'-thionocarbonyldiimidazole. Purity (95 %) was checked by 1H-NMR,13C-NMR and infrared and mass spectrometry.Sulforaphane was a competitive inhibitor of CYP2E1 in acetone-induced Sprague-Dawley rat microsomes (Ki 37.9 ± 4.5μM), as measured by the p-nitrophenol hydroxylase assay. Ethoxyresorufin deethylase activity (EROD), a measurement of CYP1A activity, was also inhibited by sulforaphane (100μM) but was not competitive, and a preincubation time-dependence was observed. In view of these results, the capacity of sulforaphane to inhibit N-nitrosodimethylamine (NDMA)-induced genotoxicity (CYP2E1-mediated) was studied using mouse liver activation systems. Sulforaphane (>0.8μM) inhibited the mutagenicity of NDMA (4.4 mg/plate) in Salmonella typhimurium strain TA100 after pre-incubation for 45 min with acetone-induced liver 9000 g supernatants from Balb/c mice. Unscheduled DNA synthesis induced by NDMA (33μ5 M) in mouse hepatocytes was also reduced by sulforaphane in a concentration-dependent manner (0.064-20μM). Sulforaphane was not genotoxic itself in any of these systems and cytotoxic only at high concentrations (>0.5 mM and > 40μM respectively). The ability of sulforaphane to modulate the orthologous human enzymes was studied using a human epithelial liver cell line (THLE) expressing individual human CYP450 isoenzymes. Using the Comet assay (a measurement of DNA strand breakage under alkaline conditions), NDMA (0.01-1μg/ml) and IQ (0.1-10μg/ml) were used to produce strand breaks in T5-2E1 cells (expressing human CYP2E1) and T5-1A2 cells (expressing human CYP1A2) respectively, however no response was observed in T5-neo cells (without CYP450 cDNA transfection). Sulforaphane inhibited both NDMA and IQ-induced DNA strand breakage in a concentration-dependent manner (0.1-10μM).The inhibition of metabolic activation as a basis for the antigenotoxic action of sulforaphane in these systems (bacteria, rodent hepatocytes and human cells) is further supported by the lack of this chemopreventor to influence NaN3 mutagenicity in S. typhimurium and H202-induced DNA strand breakage in T5-neo cells. These findings suggest that inhibition of CYP2E1 and CYP1A by sulforaphane may contribute to its chemoprotective potential.
Resumo:
The passage number and origin of two populations of Caco-2 cells influence their enterocyte-like characteristics. Caco-2 cells of passage number >90 from Novartis pharmaceutical company possess higher levels of expression of alkaline phosphatase and P-glycoprotein and a greater cellular uptake of Gly-1.-Pro than those of passage number <40 from the American Type Tissue Culture collection. High P-gp expressing Caco-2 cells have been developed through stepwise selection of the cells with doxonibicin. This newly-developed cell line (hereafter referred to as Type I) possesses approximately twice as much P-gp protein than non-exposed cells, restricts the transepithelial transport of vincristine in the apical-to-basolateral direction whilst facilitating its transport in the reverse direction and accumulates less vincristine than non-exposed cells. There is no apparent evidence of the co-existence of the multidrug resistance protein (MIT) in Type I cells to account for the above-listed observations. Stopping the exposure for more than 28 days decreases the P-gp protein expression in previously doxorubicin-exposed Type I Caco-2 cells and reduces the magnitude of vincristine transepithelial fluxes in both directions to the levels that are almost similar to those of non-exposed cells. Exposing Caco-2 cells to 0.25 JAM la, 25-dihydroxyvitamin D3 induces their expression of cytochrome P450 3A4 protein to the level that is equivalent to that from isolated human jejunal cells. Under the same treatment, doxorubiein-exposed (Type I) cells metabolise naidazolam poorly and less extensively compared to non-exposed cells, suggesting that there is no such co-regulation of P-gp and CYP3A4 in Caco-2 cells. However, there is evidence which suggests CYP3A metabolises mida_zolam into 1- and 4-hydroxymidazolam, the latter may possibly be a P-gp substrate and is transported extracellularly by P-gp, supporting the hypothesis of P-gp-CYP3A4 synergistic roles in keeping xenobiotics out of the body. Doxoru.bicin-exposed (Type I) cells are less effective in translocating L-proline and glycyl-L-proline across the cell mono layers.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The selection of cytochrome P450 enzymes from large variant libraries, and the subsequent use of these enzymes in preparative scale biotransformations, remains a formidable challenge due to the complexities of the associated electron transport systems. Here, a powerful approach for the generation and screening of P450cam libraries for new function is presented that is both flexible and robust. A targeted library was generated wherein only the P450cam active-site amino acids Y96 and F98 were fully randomized and biotransformations, using a novel P450cam whole-cell system, were screened by GC–MS for the hydroxylation of diphenylmethane. One in 50 of the reactions screened, including 16 different variants, produced 4-hydroxydiphenylmethane with up to 92% conversion observed in the case of the Y96A variant. These results demonstrate a primary example of the screening of P450cam libraries in a format that is compatible with extension to preparative scale reactions.
Resumo:
The importance of the isoform CYP2E1 of the human cytochrome P-450 superfamily of enzymes for occupational and environmental medicine is derived from its unique substrate spectrum that includes a number of highly important high-production chemicals, such as aliphatic and aromatic hydrocarbons, solvents and industrial monomers (i.a. alkanes, alkenes, aromatic and halogenated hydrocarbons). Many polymorphic genes, such as CYP2E1, show considerable differences in allelic distribution between different human populations. The polymorphic nature of the human CYP2E1 gene is significant for inter-individual differences in toxicity of its substrates. Since the substrate spectrum of CYP2E1 includes many compounds of basic relevance to industrial toxicology, a rationale for metabolic interactions of different CYP2E1 substrates is provided. In-depth research into the inter-individual phenotypic differences of human CYP2E1 enzyme activities was enabled by the recognition that the 6-hydroxylation of the drug chlorzoxazone is mediated by CYP2E1. Studies on CYP2E1 phenotyping have pointed to inter-individual variations in enzyme activities. There are consistent ethnic differences in CYP2E1 enzyme expression, mostly demonstrated between European and Japanese populations, which point to a major impact of genetic factors. The most frequently studied genetic polymorphisms are the restriction fragment length polymorphisms PstI/RsaI (mutant allele: CYP2E1*5B) located in the 5′-flanking region of the gene, as well as the DraI polymorphism (mutant allele: CYP2E1*6) located in intron 6. These polymorphisms are partly related, as they form the common allele designated CYP2E1*5A. Striking inter-ethnic differences between Europeans and Asians appear with respect to the frequencies of the CYP2E1*5A allele (only approximately 5% of Europeans are heterozygous, but 37% of Asians are, whilst 6% of Asians are homozygous). Available studies indicate a wide variation in human CYP2E1 expression, which are very likely based on complex gene-environment interactions. Major inter-ethnic differences are apparent on the genotyping and the phenotyping levels. Selected cases are presented where inter-ethnic variations of CYP2E1 may provide likely explanations for unexplained findings concerning industrial chemicals that are CYP2E1 substrates. Possible consequences of differential inter-individual and inter-ethnic susceptibilities are related to individual expressions of clinical symptoms of chemical toxicity, to results of biological monitoring of exposed workers, and to the interpretation of results of epidemiological or molecular-epidemiological studies.