163 resultados para cyanogenic glucoside


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large family of membrane channel proteins selective for transport of water (aquaporins) or water plus glycerol (aquaglyceroporins) has been found in diverse life forms. Escherichia coli has two members of this family—a water channel, AqpZ, and a glycerol facilitator, GlpF. Despite having similar primary amino acid sequences and predicted structures, the oligomeric state and solute selectivity of AqpZ and GlpF are disputed. Here we report biochemical and functional characterizations of affinity-purified GlpF and compare it to AqpZ. Histidine-tagged (His-GlpF) and hemagglutinin-tagged (HA-GlpF) polypeptides encoded by a bicistronic construct were expressed in bacteria. HA-GlpF and His-GlpF appear to form oligomers during Ni-nitrilotriacetate affinity purification. Sucrose gradient sedimentation analyses showed that the oligomeric state of octyl glucoside-solubilized GlpF varies: low ionic strength favors subunit dissociation, whereas Mg2+ stabilizes tetrameric assembly. Reconstitution of affinity-purified GlpF into proteoliposomes increases glycerol permeability more than 100-fold and water permeability up to 10-fold compared with control liposomes. Glycerol and water permeability of GlpF both occur with low Arrhenius activation energies and are reversibly inhibited by HgCl2. Our studies demonstrate that, unlike AqpZ, a water-selective stable tetramer, purified GlpF exists in multiple oligomeric forms under nondenaturing conditions and is highly permeable to glycerol but less well permeated by water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work [14C]spermidine binding to total proteins solubilized from plasma membrane purified from zucchini (Cucurbita pepo L.) hypocotyls was investigated. Proteins were solubilized using octyl glucoside as a detergent. Specific polyamine binding was thermolabile, reversible, pH dependent with an optimum at pH 8.0, and had a Kd value of 5 μm, as determined by glass-fiber-filter assays. Sephadex G-25 M gel-filtration assays confirmed the presence of a spermidine-protein(s) complex with a specific binding activity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and native polyacrylamide gel electrophoresis of collected fractions having the highest specific spermidine-binding activity, several protein bands (113, 75, 66, and 44 kD) were identified. The specificity of spermidine binding was examined by gel-filtration competition experiments performed using other polyamines and compounds structurally related to spermidine. Partial purification on Sephadex G-200 led to the identification of 66- and 44-kD protein bands, which may represent the putative spermidine-binding protein(s) on the plasmalemma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the cyanogenic crop cassava (Manihot esculenta, Crantz), the final step in cyanide production is the conversion of acetone cyanohydrin, the deglycosylation product of linamarin, to cyanide plus acetone. This process occurs spontaneously at pH greater than 5.0 or enzymatically and is catalyzed by hydroxynitrile lyase (HNL). Recently, it has been demonstrated that acetone cyanohydrin is present in poorly processed cassava root food products. Since it has generally been assumed that HNL is present in all cassava tissues, we reinvestigated the enzymatic properties and tissue-specific distribution of HNL in cassava. We report the development of a rapid two-step purification protocol for cassava HNL, which yields an enzyme that is catalytically more efficient than previously reported (Hughes, J., Carvalho, F., and Hughes, M. [1994] Arch Biochem Biophys 311: 496–502). Analyses of the distribution of HNL activity and protein indicate that the accumulation of acetone cyanohydrin in roots is due to the absence of HNL, not to inhibition of the enzyme. Furthermore, the absence of HNL in roots and stems is associated with very low steady-state HNL transcript levels. It is proposed that the lack of HNL in cassava roots accounts for the high acetone cyanohydrin levels in poorly processed cassava food products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sorghum (Sorghum bicolor L. Moench) has two isozymes of the cyanogenic β-glucosidase dhurrinase: dhurrinase-1 (Dhr1) and dhurrinase-2 (Dhr2). A nearly full-length cDNA encoding dhurrinase was isolated from 4-d-old etiolated seedlings and sequenced. The cDNA has a 1695-nucleotide-long open reading frame, which codes for a 565-amino acid-long precursor and a 514-amino acid-long mature protein, respectively. Deduced amino acid sequence of the sorghum Dhr showed 70% identity with two maize (Zea mays) β-glucosidase isozymes. Southern-blot data suggested that β-glu-cosidase is encoded by a small multigene family in sorghum. Northern-blot data indicated that the mRNA corresponding to the cloned Dhr cDNA is present at high levels in the node and upper half of the mesocotyl in etiolated seedlings but at low levels in the root—only in the zone of elongation and the tip region. Light-grown seedling parts had lower levels of Dhr mRNA than those of etiolated seedlings. Immunoblot analysis performed using maize-anti-β-glucosidase sera detected two distinct dhurrinases (57 and 62 kD) in sorghum. The distribution of Dhr activity in different plant parts supports the mRNA and immunoreactive protein data, suggesting that the cloned cDNA corresponds to the Dhr1 (57 kD) isozyme and that the dhr1 gene shows organ-specific expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sorghum (Sorghum bicolor L. Moench) accumulates the anthocyanin cyanidin 3-dimalonyl glucoside in etiolated mesocotyls in response to light. Inoculation with the nonpathogenic fungus Cochliobolus heterostrophus drastically reduced the light-induced accumulation of anthocyanin by repressing the transcription of the anthocyanin biosynthesis genes encoding flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. In contrast to these repression effects, fungal inoculation resulted in the synthesis of the four known 3-deoxyanthocyanidin phytoalexins and a corresponding activation of genes encoding the key branch-point enzymes in the phenylpropanoid pathway, phenylalanine ammonia-lyase and chalcone synthase. In addition, a gene encoding the pathogenesis-related protein PR-10 was strongly induced in response to inoculation. The accumulation of phytoalexins leveled off by 48 h after inoculation and was accompanied by a more rapid increase in the rate of anthocyanin accumulation. The results suggest that the plant represses less essential metabolic activities such as anthocyanin synthesis as a means of compensating for the immediate biochemical and physiological needs for the defense response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infantile Pompe disease is a fatal genetic muscle disorder caused by a deficiency of acid alpha-glucosidase, a glycogen-degrading lysosomal enzyme. We constructed a plasmid containing a 5'-shortened human acid alpha-glucosidase cDNA driven by the cytomegalovirus promoter, as well as the aminoglycoside phosphotransferase and dihydrofolate reductase genes. Following transfection in dihydrofolate reductase-deficient Chinese hamster ovary cells, selection with Geneticin, and amplification with methotrexate, a cell line producing high levels of the alpha-glucosidase was established. In 48 hr, the cells cultured in Iscove's medium with 5 mM butyrate secreted 110-kDa precursor enzyme that accumulated to 91 micrograms.ml-1 in the medium (activity, > 22.6 mumol.hr-1.ml-1). This enzyme has a pH optimum similar to that of the mature form, but a lower Vmax and Km for 4-methylumbelliferyl-alpha-D-glucoside. It is efficiently taken up by fibroblasts from Pompe patients, restoring normal levels of acid alpha-glucosidase and glycogen. The uptake is blocked by mannose 6-phosphate. Following intravenous injection, high enzyme levels are seen in heart and liver. An efficient production system now exists for recombinant human acid alpha-glucosidase targeted to heart and capable of correcting fibroblasts from patients with Pompe disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 microM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-beta-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies in our laboratory as well as others strongly suggest that salicylic acid (SA) plays an important signaling role in plant defense against pathogens. We have found that increases in endogenous SA levels correlates with both resistance of tobacco to infection with tobacco mosaic virus and induction of defense-related genes such as that encoding pathogenesis-related protein 1 (PR-1). Some of this newly synthesized SA was conjugated to glucose to form SA beta-glucoside. A cell wall-associated beta-glucosidase activity that releases SA from this glucoside has been identified, suggesting that SA beta-glucoside serves as an inactive storage form of SA. By purifying a soluble SA-binding protein and isolating its encoding cDNA from tobacco, we have been able to further characterize the mechanism of SA signaling. This protein is a catalase, and binding of SA and its biologically active analogues inhibited catalase's ability to convert H2O2 to O2 and H2O. The resulting elevated levels of cellular H2O2 appeared to induce PR-1 gene expression, perhaps by acting as a second messenger. Additionally, transgenic tobacco expressing an antisense copy of the catalase gene and exhibiting depressed levels of catalase also showed constitutive expression of PR-1 genes. To further dissect the SA signaling pathway, we have tested several abiotic inducers of PR gene expression and disease resistance for their ability to stimulate SA production. Levels of SA and its glucoside rose following application of all of the inducers except 2,6-dichloroisonicotinic acid. 2,6-Dichloroisonicotinic acid was found to bind catalase directly and inhibit its enzymatic activity. Thus, it appears that many compounds that induce PR gene expression and disease resistance in plants inactivate catalases directly or indirectly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small GTP-binding proteins play a critical role in the regulation of a range of cellular processes--including growth, differentiation, and intracellular transportation. Previously, we isolated a gene, rgp1, encoding a small GTP-binding protein, by differential screening of a rice cDNA library with probe DNAs from rice tissues treated with or without 5-azacytidine, a powerful inhibitor of DNA methylation. To determine the physiological role of rgp1, the coding region was introduced into tobacco plants. Transformants, with rgp1 in either sense or antisense orientations, showed distinct phenotypic changes with reduced apical dominance, dwarfism, and abnormal flower development. These abnormal phenotypes appeared to be associated with the higher levels of endogenous cytokinins that were 6-fold those of wild-type plants. In addition, the transgenic plants produced salicylic acid and salicylic acid-beta-glucoside in an unusual response to wounding, thus conferring increased resistance to tobacco mosaic virus infection. In normal plants, the wound- and pathogen-induced signal-transduction pathways are considered to function independently. However, the wound induction of salicylic acid in the transgenic plants suggests that expression of rgp1 somehow interfered with the normal signaling pathways and resulted in cross-signaling between these distinct transduction systems. The results imply that the defense signal-transduction system consists of a complicated and finely tuned network of several regulatory factors, including cytokinins, salicylic acid, and small GTP-binding proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most ethnopharmacological studies overlook food plants, yet many edible plants, also have medicinal value. I documented plants that are used as both food and medicine by the Totonac of Zapotitlan de Mendez, Mexico and recorded the presence of selected secondary compounds, and physical characteristics in these plants. Photoactivity, antimicrobial, and antifungal assays also were performed. The presence of these properties were compared among food/medicine plants, food, medicinal, and randomly selected plants. I predicted that a higher percentage of medicinal plants would contain the secondary compounds, physical characteristics, and bioactivity compared to the other groups. Phenolics and cyanogenic glycosides in the medicinal group were significantly greater than in the food/medicine group. The food plants did not differ greatly from the medicinal plants. This research indicates that including food plants in ethnomedical studies could provide a more complete knowledge of peoples therapeutic resources and practices. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anxiety disorders and Parkinson’s disease (PD) affect a large portion of the world population. Indeed, therapeutic alternatives available do not contribute to improve most clinical conditions and/or are linked with undesirable side effects. Thus, there is a great demand for the development of new drugs to treatment of these diseases. Passiflora cincinnata Mast. is a native species present in several Brazilian states, popularly known as “maracujá do mato”, “maracujá tubarão” or “maracujá mochila”. Additionally, species of Passiflora genus are traditionally known for their exotic flowers, edible fruits with pronounced flavor and for their sedative, tranquilizer and anxiolytic properties reported by folk medicine. These plants possess important organic compounds such as phenols, cyanogenic glycosides, flavonoids and alkaloids, which are responsible for the anxiolytic, antioxidant, anti-inflammatory, antihyperglycemic, among others activities when tested in mammals. Despite this fact, only a few studies have been conducted to investigate the possible in vivo biological effects of Passiflora cincinnata Mast extracts. Thereby, in this study we evaluated the effects of the alcoholic extract of this plant in anxiety and PD animal model. Mice acutely or chronically administered with ethanolic extract of P. cincinnata do not showed any anxiogenic- or anxyolitic-like effect in elevated plus maze (EPM). In order to reproduce PD symptom’s in mice, we administered repeated injections of reserpine which progressively induced motor impairments such as increase in catalepsy, oral movements, and reduction of the average speed of the animals in the open field, as well as depleted dopamine prodution in SNpc cells. Furthermore, this treatment resulted in the loss of aversive memory recall in mice when undergoing PMDAT. Yet, passiflora group also show this amnesic profile. However, animals treated concomitantly with the alcoholic extract of Passiflora cincinnata Mast. showed higher latency for the onset of motor impairment evaluated by catalepsy. Thus, our results shows that the alcoholic extract of the plant P. cincinnata was able to delay the onset of the catalepsy induced by reserpine administration, plus reverted the depletion of dopamine production in SNpc cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mediterranean species Cynara cardunculus L. is recognized in the traditional medicine, for their hepatoprotective and choleretic effects. Biomass of C. cardunculus L. var. altilis (DC), or cultivated cardoon, may be explored not only for the production of energy and pulp fibers, but also for the extraction of bioactive compounds. The chemical characterization of extractable components, namely terpenic and phenolic compounds, may valorize the cultivated cardoon plantation, due to their antioxidant, antitumoral and antimicrobial activities. In this study, the chemical composition of lipophilic and phenolic fractions of C. cardunculus L. var. altilis (DC), cultivated in the south of Portugal (Baixo Alentejo region) was characterized in detail, intending the integral valorization of its biomass. The biological activity of cultivated cardoon extracts was evaluated in terms of antioxidant, human tumor cell antiproliferative and antibacterial effects. Gas chromatography-mass spectrometry (GC-MS) was used for the chemical analysis of lipophilic compounds. Sixty-five lipophilic compounds were identified, from which 1 sesquiterpene lactone and 4 pentacyclic triterpenes were described, for the first time, as cultivated cardoon components, such as: deacylcynaropicrin, acetates of β- and α-amyrin, lupenyl acetate and ψ-taraxasteryl acetate. Sesquiterpene lactones were the major family of lipophilic components of leaves (≈94.5 g/kg), mostly represented by cynaropicrin (≈87.4 g/kg). Pentacyclic triterpenes were also detected, in considerably high contents, in the remaining parts of cultivated cardoon, especially in the florets (≈27.5 g/kg). Taraxasteryl acetate was the main pentacyclic triterpene (≈8.9 g/kg in florets). High pressure liquid chromatography-mass spectrometry (HPLC-MS) was utilized for the chemical analysis of phenolic compounds. Among the identified 28 phenolic compounds, eriodictyol hexoside was reported for the first time as C. cardunculus L. component, and 6 as cultivated cardoon components, namely 1,4-di-O-caffeoylquinic acid, naringenin 7-O-glucoside, naringenin rutinoside, naringenin, luteolin acetylhexoside and apigenin acetylhexoside. The highest content of the identified phenolic compounds was observed in the florets (≈12.6 g/kg). Stalks outer part contained the highest hydroxycinnamic acids abundance (≈10.3 g/kg), and florets presented the highest flavonoids content (≈10.3 g/kg). The antioxidant activity of phenolic fraction was examined through 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Stalks outer part, and receptacles and bracts extracts demonstrated the highest antioxidant effect on DPPH (IC50 of 34.35 μg/mL and 35.25 μg/mL, respectively). (cont.) abstract (cont.) The DPPH scavenging effect was linearly correlated with the total contents of hydroxycinnamic acids (r = -0.990). The in vitro antiproliferative activity of cultivated cardoon lipophilic and phenolic extracts was evaluated on a human tumor cells line of triple-negative breast cancer (MDA-MB-231), one of the most refractory human cancers to conventional therapeutics. After 48 h of exposition, leaves lipophilic extract showed higher inhibitory effect (IC50 = 10.39 μg/mL) than florets lipophilic extract (IC50 = 315.22 μg/mL), upon MDA-MB-231 cellular viability. Pure compound of cynaropicrin, representative of the main compound identified in leaves lipophilic extract, also prevented the cell proliferation of MDA-MB-231 (IC50 = 17.86 μM). MDA-MB-231 cells were much more resistant to the 48 h- treatment with phenolic extracts of stalks outer part (IC50 = 3341.20 μg/mL) and florets (IC50 > 4500 μg/mL), and also with the pure compound of 1,5-di-O-caffeoylquinic acid (IC50 = 1741.69 μM). MDA-MB-231 cells were exposed, for 48 h, to the respective IC50 concentrations of leaves lipophilic extract and pure compound of cynaropicrin, in order to understand their ability in modelling cellular responses, and consequently important potentially signaling pathways for the cellular viability decrease. Leaves lipophilic extract increased the caspase-3 enzymatic activity, contrarily to pure compound of cynaropicrin. Additionally, leaves lipophilic extract and pure compound of cynaropicrin caused G2 cell cycle arrest, possibly by upregulating the p21Waf1/Cip1 and the accumulation of phospho-Tyr15-CDK1 and cyclin B1. The inhibitory effects of leaves lipophilic extract and cynaropicrin pure compound, against the MDA-MB-231 cell proliferation, may also be related to the downregulation of phospho-Ser473-Akt. The antibacterial activity of cultivated cardoon lipophilic and phenolic extracts was assessed, for the first time, on two multidrug-resistant bacteria, such as the Gram-negative Pseudomonas aeruginosa PAO1 and the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), two of the main bacteria responsible for health care-associated infections. Accordingly, the minimum inhibitory concentrations (MIC) were determined. Lipophilic and phenolic extracts of florets did not have antibacterial activity on P. aeruginosa PAO1 and MRSA (MIC > 2048 μg/mL). Leaves lipophilic extract did not prevent the P. aeruginosa PAO1 growth, but pure compound of cynaropicrin was slightly active (MIC = 2048 μg/mL). Leaves lipophilic extract and pure compound of cynaropicrin blocked MRSA growth (MIC of 1024 and 256 μg/mL, respectively). The scientific knowledge revealed in this thesis, either by the chemical viewpoint, or by the biological viewpoint, contributes for the valorization of C. cardunculus L. var. altilis (DC) biomass. Cultivated cardoon has potential to be exploited as source of bioactive compounds, in conciliation with other valorization pathways, and Portuguese traditional cheeses manufacturing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural resources like plants are currently used all over developed and under developed countries of the world as traditional home remedies and are promising agents for drug discovery as they play crucial role in traditional medicine. The use of plants for medicinal purpose usually varies from country to country and region to region because their use depends on the history, culture, philosophy and personal attitudes of the users (Ahmad et al., 2015). The use of plants and plant products as drugs predates the written human history (Hayta et al., 2014). Plants are a very important resource for traditional drugs and around 80% of the population of the planet use plants for the treatment of many diseases and traditional herbal medicine accounts for 30-50% of the total medicinal consumption in China. In North America, Europe and other well-developed regions over 50% of the population have used traditional preparations at least once (Dos Santos Reinaldo et al., 2015). Medicinal plants have been used over years for multiple purposes, and have increasingly attract the interest of researchers in order to evaluate their contribution to health maintenance and disease’s prevention (Murray, 2004). Recently between 50,000 and 70,000 species of plants are known and are being used in the development of modern drugs. Plants were the main therapeutic agents used by humans from the 19th century, and their role in medicine is always topical (Hayta et al., 2014). The studies of medicinal plants are rapidly increasing due to the search for new active molecules, and to improve the production of plants or bioactive molecules for the pharmaceutical industries (Rates, 2001). Several studies have been reported, but numerous active compounds directly responsible for the observed bioactive properties remain unknown, while in other cases the mechanism of action is not fully understood. According to the WHO 25% of all modern medicines including both western and traditional medicine have been extracted from plants, while 75% of new drugs against infective diseases that have arrived between 1981 and 2002 originated from natural sources, it was reported that the world market for herbal medicines stood at over US $60 billion per year and is growing steadily (Bedoya et al., 2009). Traditional medicine has an important economic impact in the 21st century as it is used worldwide, taking advantage on the low cost, accessibility, flexibility and diversity of medicinal plants (Balunas & Kinghorn, 2005).