912 resultados para cutting stock problem with setups
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This thesis deals with an investigation of Decomposition and Reformulation to solve Integer Linear Programming Problems. This method is often a very successful approach computationally, producing high-quality solutions for well-structured combinatorial optimization problems like vehicle routing, cutting stock, p-median and generalized assignment . However, until now the method has always been tailored to the specific problem under investigation. The principal innovation of this thesis is to develop a new framework able to apply this concept to a generic MIP problem. The new approach is thus capable of auto-decomposition and autoreformulation of the input problem applicable as a resolving black box algorithm and works as a complement and alternative to the normal resolving techniques. The idea of Decomposing and Reformulating (usually called in literature Dantzig and Wolfe Decomposition DWD) is, given a MIP, to convexify one (or more) subset(s) of constraints (slaves) and working on the partially convexified polyhedron(s) obtained. For a given MIP several decompositions can be defined depending from what sets of constraints we want to convexify. In this thesis we mainly reformulate MIPs using two sets of variables: the original variables and the extended variables (representing the exponential extreme points). The master constraints consist of the original constraints not included in any slaves plus the convexity constraint(s) and the linking constraints(ensuring that each original variable can be viewed as linear combination of extreme points of the slaves). The solution procedure consists of iteratively solving the reformulated MIP (master) and checking (pricing) if a variable of reduced costs exists, and in which case adding it to the master and solving it again (columns generation), or otherwise stopping the procedure. The advantage of using DWD is that the reformulated relaxation gives bounds stronger than the original LP relaxation, in addition it can be incorporated in a Branch and bound scheme (Branch and Price) in order to solve the problem to optimality. If the computational time for the pricing problem is reasonable this leads in practice to a stronger speed up in the solution time, specially when the convex hull of the slaves is easy to compute, usually because of its special structure.
Resumo:
We investigate a class of optimal control problems that exhibit constant exogenously given delays in the control in the equation of motion of the differential states. Therefore, we formulate an exemplary optimal control problem with one stock and one control variable and review some analytic properties of an optimal solution. However, analytical considerations are quite limited in case of delayed optimal control problems. In order to overcome these limits, we reformulate the problem and apply direct numerical methods to calculate approximate solutions that give a better understanding of this class of optimization problems. In particular, we present two possibilities to reformulate the delayed optimal control problem into an instantaneous optimal control problem and show how these can be solved numerically with a stateof- the-art direct method by applying Bock’s direct multiple shooting algorithm. We further demonstrate the strength of our approach by two economic examples.
Resumo:
We analyze the effect of environmental uncertainties on optimal fishery management in a bio-economic fishery model. Unlike most of the literature on resource economics, but in line with ecological models, we allow the different biological processes of survival and recruitment to be affected differently by environmental uncertainties. We show that the overall effect of uncertainty on the optimal size of a fish stock is ambiguous, depending on the prudence of the value function. For the case of a risk-neutral fishery manager, the overall effect depends on the relative magnitude of two opposing effects, the 'convex-cost effect' and the 'gambling effect'. We apply the analysis to the Baltic cod and the North Sea herring fisheries, concluding that for risk neutral agents the net effect of environmental uncertainties on the optimal size of these fish stocks is negative, albeit small in absolute value. Under risk aversion, the effect on optimal stock size is positive for sufficiently high coefficients of constant relative risk aversion.
Resumo:
In recent years, global supply chains have increasingly suffered from reliability issues due to various external and difficult to-manage events. The following paper aims to build an integrated approach for the design of a Supply Chain under the risk of disruption and demand fluctuation. The study is divided in two parts: a mathematical optimization model, to identify the optimal design and assignments customer-facility, and a discrete-events simulation of the resulting network. The first one describes a model in which plant location decisions are influenced by variables such as distance to customers, investments needed to open plants and centralization phenomena that help contain the risk of demand variability (Risk Pooling). The entire model has been built with a proactive approach to manage the risk of disruptions assigning to each customer two types of open facilities: one that will serve it under normal conditions and a back-up facility, which comes into operation when the main facility has failed. The study is conducted on a relatively small number of instances due to the computational complexity, a matheuristic approach can be found in part A of the paper to evaluate the problem with a larger set of players. Once the network is built, a discrete events Supply Chain simulation (SCS) has been implemented to analyze the stock flow within the facilities warehouses, the actual impact of disruptions and the role of the back-up facilities which suffer a great stress on their inventory due to a large increase in demand caused by the disruptions. Therefore, simulation follows a reactive approach, in which customers are redistributed among facilities according to the interruptions that may occur in the system and to the assignments deriving from the design model. Lastly, the most important results of the study will be reported, analyzing the role of lead time in a reactive approach for the occurrence of disruptions and comparing the two models in terms of costs.
Resumo:
This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hub-and-spoke networks are widely studied in the area of location theory. They arise in several contexts, including passenger airlines, postal and parcel delivery, and computer and telecommunication networks. Hub location problems usually involve three simultaneous decisions to be made: the optimal number of hub nodes, their locations and the allocation of the non-hub nodes to the hubs. In the uncapacitated single allocation hub location problem (USAHLP) hub nodes have no capacity constraints and non-hub nodes must be assigned to only one hub. In this paper, we propose three variants of a simple and efficient multi-start tabu search heuristic as well as a two-stage integrated tabu search heuristic to solve this problem. With multi-start heuristics, several different initial solutions are constructed and then improved by tabu search, while in the two-stage integrated heuristic tabu search is applied to improve both the locational and allocational part of the problem. Computational experiments using typical benchmark problems (Civil Aeronautics Board (CAB) and Australian Post (AP) data sets) as well as new and modified instances show that our approaches consistently return the optimal or best-known results in very short CPU times, thus allowing the possibility of efficiently solving larger instances of the USAHLP than those found in the literature. We also report the integer optimal solutions for all 80 CAB data set instances and the 12 AP instances up to 100 nodes, as well as for the corresponding new generated AP instances with reduced fixed costs. Published by Elsevier Ltd.
Resumo:
This paper addresses the single machine scheduling problem with a common due date aiming to minimize earliness and tardiness penalties. Due to its complexity, most of the previous studies in the literature deal with this problem using heuristics and metaheuristics approaches. With the intention of contributing to the study of this problem, a branch-and-bound algorithm is proposed. Lower bounds and pruning rules that exploit properties of the problem are introduced. The proposed approach is examined through a computational comparative study with 280 problems involving different due date scenarios. In addition, the values of optimal solutions for small problems from a known benchmark are provided.
Resumo:
The flowshop scheduling problem with blocking in-process is addressed in this paper. In this environment, there are no buffers between successive machines: therefore intermediate queues of jobs waiting in the system for their next operations are not allowed. Heuristic approaches are proposed to minimize the total tardiness criterion. A constructive heuristic that explores specific characteristics of the problem is presented. Moreover, a GRASP-based heuristic is proposed and Coupled with a path relinking strategy to search for better outcomes. Computational tests are presented and the comparisons made with an adaptation of the NEH algorithm and with a branch-and-bound algorithm indicate that the new approaches are promising. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we deal with a generalized multi-period mean-variance portfolio selection problem with market parameters Subject to Markov random regime switchings. Problems of this kind have been recently considered in the literature for control over bankruptcy, for cases in which there are no jumps in market parameters (see [Zhu, S. S., Li, D., & Wang, S. Y. (2004). Risk control over bankruptcy in dynamic portfolio selection: A generalized mean variance formulation. IEEE Transactions on Automatic Control, 49, 447-457]). We present necessary and Sufficient conditions for obtaining an optimal control policy for this Markovian generalized multi-period meal-variance problem, based on a set of interconnected Riccati difference equations, and oil a set of other recursive equations. Some closed formulas are also derived for two special cases, extending some previous results in the literature. We apply the results to a numerical example with real data for Fisk control over bankruptcy Ill a dynamic portfolio selection problem with Markov jumps selection problem. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.
Resumo:
We examine a problem with n players each facing the same binary choice. One choice is superior to the other. The simple assumption of competition - that an individual's payoff falls with a rise in the number of players making the same choice, guarantees the existence of a unique symmetric equilibrium (involving mixed strategies). As n increases, there are two opposing effects. First, events in the middle of the distribution - where a player finds itself having made the same choice as many others - become more likely, but the payoffs in these events fall. In opposition, events in the tails of the distribution - where a player finds itself having made the same choice as few others - become less likely, but the payoffs in these events remain high. We provide a sufficient condition (strong competition) under which an increase in the number of players leads to a reduction in the equilibrium probability that the superior choice is made.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds applica- tion in many fields. As the complementarity constraints fail the standard Linear In- dependence Constraint Qualification (LICQ) or the Mangasarian-Fromovitz constraint qualification (MFCQ), at any feasible point, the nonlinear programming theory may not be directly applied to MPCC. However, the MPCC can be reformulated as NLP problem and solved by nonlinear programming techniques. One of them, the Inexact Restoration (IR) approach, performs two independent phases in each iteration - the feasibility and the optimality phases. This work presents two versions of an IR algorithm to solve MPCC. In the feasibility phase two strategies were implemented, depending on the constraints features. One gives more importance to the complementarity constraints, while the other considers the priority of equality and inequality constraints neglecting the complementarity ones. The optimality phase uses the same approach for both algorithm versions. The algorithms were implemented in MATLAB and the test problems are from MACMPEC collection.
Resumo:
In this paper a solution to an highly constrained and non-convex economical dispatch (ED) problem with a meta-heuristic technique named Sensing Cloud Optimization (SCO) is presented. The proposed meta-heuristic is based on a cloud of particles whose central point represents the objective function value and the remaining particles act as sensors "to fill" the search space and "guide" the central particle so it moves into the best direction. To demonstrate its performance, a case study with multi-fuel units and valve- point effects is presented.
Resumo:
Consider the problem of scheduling a set of implicitdeadline sporadic tasks on a heterogeneous multiprocessor so as to meet all deadlines. Tasks cannot migrate and the platform is restricted in that each processor is either of type-1 or type-2 (with each task characterized by a different speed of execution upon each type of processor). We present an algorithm for this problem with a timecomplexity of O(n·m), where n is the number of tasks and m is the number of processors. It offers the guarantee that if a task set can be scheduled by any non-migrative algorithm to meet deadlines then our algorithm meets deadlines as well if given processors twice as fast. Although this result is proven for only a restricted heterogeneous multiprocessor, we consider it significant for being the first realtime scheduling algorithm to use a low-complexity binpacking approach to schedule tasks on a heterogeneous multiprocessor with provably good performance.