946 resultados para critical electrolyte concentration


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phenol oxidase (PO) was isolated as a proenzyme (pro-phenol oxidase, pro-PO) from the hemolymph of Manduca sexta larvae and purified to homogeneity. Pro-PO exhibits a M(r) of 130,000 on gel filtration and two bands with an apparent M(r) of approximately 100,000 on SDS/PAGE, as well as size-exclusion HPLC. Activation of pro-PO was achieved either by specific proteolysis by a cuticular protease or by the detergent cetylpyridinium chloride at a concentration below the critical micellar concentration. A cDNA clone for M. sexta pro-PO was obtained from a larval hemocyte cDNA library. The clone encodes a polypeptide of approximately 80,000 Da that contains two copper-binding sites and shows high sequence similarity to POs, hemocyanins, and storage proteins of arthropods. The M. Sexta pro-PO, together with other arthropod pro-POs, contains a short stretch of amino acids with sequence similarity to the thiol ester region of alpha-macroglobulins and complement proteins C3 and C4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As diversas aplicações tecnológicas de nanopartículas magnéticas (NPM) vêm intensificando o interesse por materiais com propriedades magnéticas diferenciadas, como magnetização de saturação (MS) intensificada e comportamento superparamagnético. Embora MNP metálicas de Fe, Co e bimetálicas de FeCo e FePt possuam altos valores de MS, sua baixa estabilidade química dificulta aplicações em escala nanométrica. Neste trabalho foram sintetizadas NPM de Fe, Co, FeCo e FePt com alta estabilidade química e rigoroso controle morfológico. NPM de óxido metálicos (Fe e Co) também foram obtidas. Dois métodos de síntese foram empregados. Usando método baseado em sistemas nanoheterogêneos (sistemas micelares ou de microemulsão inversa), foram sintetizadas NPM de Fe3O4 e Co metálico. Foram empregados surfactantes cátion-substituídos: dodecil sulfato de ferro(III) (FeDS) e dodecil sulfato de cobalto(II) (CoDS). Para a síntese das NPM, foram estudados e determinados a concentração micelar crítica do FeDS em 1-octanol (cmc = 0,90 mmol L-1) e o diagrama de fases pseudoternário para o sistema n-heptano/CoDS/n-butanol/H2O. NPM esferoidais de magnetita com3,4 nm de diâmetro e comportamento quase-paramagnético foram obtidas usando sistemas micelares de FeDS em 1-octanol. Já as NPM de Co obtidas via microemulsão inversa, apesar da larga distribuição de tamanho e baixa MS, são quimicamente estáveis e superparamagnéticas. O segundo método é baseado na decomposição térmica de complexos metálicos, pelo qual foram preparadas NPM esféricas de FePt e de óxidos metálicos (Fe3O4, FeXO1-X, (Co,Fe)XO1-X e CoFe2O4) com morfologia controlada e estabilidade química. O método não mostrou a mesma efetividade na síntese de NPM de FeAg e FeCo: a liga FeAg não foi obtida enquanto que NPM de FeCo com estabilidade química foram obtidas sem controle morfológico. NPM de Fe e FeCo foram preparadas a partir da redução térmica de NPM de Fe3O4 e CoFe2O4, as quais foram previamente recobertas com sílica. A sílica previne a sinterização inter-partículas, além de proporcionar caráter hidrofílico e biocompatibilidade ao material. As amostras reduzidas apresentaram aumento dos valores de MS (entre 21,3 e 163,9%), o qual é diretamente proporcional às dimensões das NPM. O recobrimento com sílica foi realizado via hidrólise de tetraetilortosilicato (TEOS) em sistema de microemulsão inversa. A espessura da camada de sílica foi controlada variando-se o tempo de reação e as concentrações de TEOS e de NPM, sendo então proposto um mecanismo do processo de recobrimento. Algumas amostras receberam um recobrimento adicional de TiO2 na fase anatase, para o qual foi empregado etilenoglicol como solvente e ligante para formação de glicolato de Ti como precursor. A espessura da camada de TiO2 (2-12 nm) é controlada variando as quantidades relativas entre NPM e o precursor de Ti. Ensaios de hipertermia magnética foram realizados para as amostras recobertas com sílica. Ensaios de hipertermia magnéticas mostram grande aumento da taxa de aquecimento das amostras após a redução térmica, mesmo para dispersões diluídas de NPM (0,6 a 4,5 mg mL-1). Taxas de aquecimento entre 0,3 e 3,0oC min-1 e SAR entre 37,2 e 96,3 W g-1. foram obtidos. A atividade fotocatalítica das amostras recobertas foram próximas à da fase anatase pura, com a vantagem de possuir um núcleo magnético que permite a recuperação do catalisador pela simples aplicação de campos magnéticos externos. Os resultados preliminares dos ensaios de hipertermia magnética e fotocatálise indicam um forte potencial dos materiais aqui relatados para aplicações em biomedicina e em fotocatálise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronopotentiometric and swelling experiments have been conducted to characterize the behavior of a Nafion membrane in NaCl and KCl aqueous solutions without and with glucose. A mixture solution with similar composition to the cerebrospinal fluid and blood plasma has also been studied. From the chronotentiograms, current-voltage curves have been obtained, and the values of the limiting current density, diffusion boundary layer thickness, difference between counter-ion transport number in membrane and free solution, and transition times have been determined for the investigated membrane systems. The obtained results indicate that the presence of glucose affects the ion transport through the membrane depending on the electrolyte and glucose concentrations. At low electrolyte concentration, experimental transition times are found to be smaller in presence of glucose, which has been related to an effective membrane area reduction in presence of glucose. The membrane system corresponding to the mixture solution shows a behavior similar to the single high concentration NaCl membrane system, indicating that the observed behavior is mainly associated to the Na^+ ions transport in higher proportion. In this case, the glucose presence does not affect significantly the investigated properties of the membrane, which is interesting for its utilization in a glucose fuel cell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La génération des fréquences somme (SFG), une technique spectroscopique spécifique aux interfaces, a été utilisée pour caractériser les changements de la structure macromoléculaire du surfactant cationique chlorure de dodécyltriméthylammonium (DTAC) à l’interface silice/eau dans une plage de pH variant entre 3 et 11. Les conditions expérimentales ont été choisies pour imiter les conditions les plus communes trouvées pendant les opérations de récupération assistée du pétrole. Particulièrement, la silice a été étudiée, car elle est un des composantes des surfaces minérales des réservoirs de grès, et l’adsorption du surfactant a été étudiée avec une force ionique pertinente pour les fluides de la fracturation hydraulique. Les spectres SFG ont présenté des pics détectables avec une amplitude croissante dans la région des étirements des groupes méthylène et méthyle lorsque le pH est diminué jusqu’à 3 ou augmenté jusqu’à 11, ce qui suggère des changements de la structure des agrégats de surfactant à l’interface silice/eau à une concentration de DTAC au-delà de la concentration micellaire critique. De plus, des changements dans l’intensité SFG ont été observés pour le spectre de l’eau quand la concentration de DTAC augmente de 0,2 à 50 mM dans les conditions acide, neutre et alcaline. À pH 3, près du point de charge zéro de la surface de silice, l’excès de charge positive en raison de l’adsorption du surfactant cationique crée un champ électrostatique qui oriente les molécules d’eau à l’interface. À pH 7 et 11, ce qui sont des valeurs au-dessus du point de charge zéro de la surface de silice, le champ électrostatique négatif à l’interface silice/eau diminue par un ordre de grandeur avec l’adsorption du surfactant comme résultat de la compensation de la charge négative à la surface par la charge positive du DTAC. Les résultats SFG ont été corrélés avec des mesures de l’angle de contact et de la tension interfaciale à pH 3, 7 et 11.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La génération des fréquences somme (SFG), une technique spectroscopique spécifique aux interfaces, a été utilisée pour caractériser les changements de la structure macromoléculaire du surfactant cationique chlorure de dodécyltriméthylammonium (DTAC) à l’interface silice/eau dans une plage de pH variant entre 3 et 11. Les conditions expérimentales ont été choisies pour imiter les conditions les plus communes trouvées pendant les opérations de récupération assistée du pétrole. Particulièrement, la silice a été étudiée, car elle est un des composantes des surfaces minérales des réservoirs de grès, et l’adsorption du surfactant a été étudiée avec une force ionique pertinente pour les fluides de la fracturation hydraulique. Les spectres SFG ont présenté des pics détectables avec une amplitude croissante dans la région des étirements des groupes méthylène et méthyle lorsque le pH est diminué jusqu’à 3 ou augmenté jusqu’à 11, ce qui suggère des changements de la structure des agrégats de surfactant à l’interface silice/eau à une concentration de DTAC au-delà de la concentration micellaire critique. De plus, des changements dans l’intensité SFG ont été observés pour le spectre de l’eau quand la concentration de DTAC augmente de 0,2 à 50 mM dans les conditions acide, neutre et alcaline. À pH 3, près du point de charge zéro de la surface de silice, l’excès de charge positive en raison de l’adsorption du surfactant cationique crée un champ électrostatique qui oriente les molécules d’eau à l’interface. À pH 7 et 11, ce qui sont des valeurs au-dessus du point de charge zéro de la surface de silice, le champ électrostatique négatif à l’interface silice/eau diminue par un ordre de grandeur avec l’adsorption du surfactant comme résultat de la compensation de la charge négative à la surface par la charge positive du DTAC. Les résultats SFG ont été corrélés avec des mesures de l’angle de contact et de la tension interfaciale à pH 3, 7 et 11.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arbuscular mycorrhizal (AM) fungi, commonly found in long-term cane-growing fields in northern Queensland, are linked with both negative and positive growth responses by sugarcane ( Saccharum spp.), depending on P supply. A glasshouse trial was established to examine whether AM density might also have an important influence on these growth responses. Mycorrhizal spores ( Glomus clarum), isolated from a long-term cane block in northern Queensland, were introduced into a pasteurised low-P cane soil at 5 densities ( 0, 0.06, 0.25, 1, 4 spores/g soil) and with 4 P treatments ( 0, 8.2, 25, and 47 mg/kg). At 83 days after planting, sugarcane tops responded positively to P fertilizer, although responses attributable to spore density were rarely observed. In one case, addition of 4 spores/g led to a 53% yield response over those without AM at 8 mg P/kg, or a relative benefit of 17 mg P/kg. Root colonisation was reduced for plants with nil or 74 mg P/kg. For those without AM, P concentration in the topmost visible dewlap ( TVD) leaf increased significantly with fertiliser P (0.07 v. 0.15%). However, P concentration increased further with the presence of AM spores. Irrespective of AM, the critical P concentration in the TVD leaf was 0.18%. This study confirms earlier reports that sugarcane is poorly responsive to AM. Spore density, up to 4 spores/g soil, appears unable to influence this responsiveness, either positively or negatively. Attempts to gain P benefits by increasing AM density through rotation seem unlikely to lead to yield increases by sugarcane. Conversely, sugarcane grown in fields with high spore densities and high plant-available P, such as long-termcane-growing soils, is unlikely to suffer a yield reduction from mycorrhizal fungi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potassium (K) nutrition and high K requirement of tropical root crops may be affected by their sodium (Na) status, as has been observed in a number of plant species. Solution culture was used to study the effects of K and Na supplies in tannia [Xanthosoma sagittifolium (L.) Schott.], sweetpotato [Ipomoea batatas (L.) Lam.] and taro [Colocasia esculenta (L.) Schott]. At low K supply, Na ameliorated symptoms of K deficiency and increased growth in tannia, and to a lesser extent in sweetpotato, but not in taro. None of the species responded to Na at adequate K supply. Differences in response to Na were attributed to differences in Na translocation to plant tops. At maximum Na supply, the Na concentration in index leaves averaged 1.82% in tannia, 0.205% in sweetpotato, and 0.0067% in taro. An increase in the supply of Na resulted in a shift in the critical K concentration for deficiency (i.e., 90% of maximum yield) in index leaves from 2.9% to 1.2% in tannia, and from 4.8% to 2.5% in sweetpotato. The critical K concentration in taro was 3.3%, irrespective of Na supply. To overcome the problem in tannia and sweetpotato of determining the critical concentration relevant to a leaf sample of unknown K status, a relationship was established for each species relating the critical K concentration to the concentration of Na in the index leaves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The irrigation of pasture with saline, Na-contaminated industrial wastewater typically results in an increase in soil ESP. From current knowledge (derived largely from cultivated agricultural soils), although these sodic soils are likely to remain stable whilst irrigated with effluent (due to the effluent’s large electrolyte concentration), during rainfall periods of low electrolyte concentration these soils would be expected to disperse. However, effluent irrigated pasture soils have been observed to maintain their structure even during intense rainfall events. Three soil types were collected (Sodosol, Vertosol and Dermosol), each with a cultivated/non-cultivated pair. The soils were equilibrated with various SAR solutions and then leached with deionised water to allow the measurement of saturated hydraulic conductivity (Ksat). At low SARs, Ksat tended to be greater in non-cultivated than cultivated soils and is attributable to a loss of structure associated with cultivation. In addition, as SAR increased, the reduction in relative Ksat tended to be significantly greater in cultivated than non-cultivated soils. The relatively rapid saturated hydraulic conductivity in the non-cultivated soils at large SARs is due to a greater aggregate stability due to greater soil C content. For the sustainable disposal of saline effluent, it is therefore necessary to ensure that soils remain undisturbed and preferably under pasture, thus maximising soil structural stability and hydraulic conductivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interactions between proteins and gold colloids functionalized with protein-resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11) (OCH(2)CH(2))(6)OMe (EG(6)OMe), in aqueous solution have been studied by small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. The mean size, 2R, and the size distribution of the decorated gold colloids have been characterized by SAXS. The monolayer-protected gold colloids have no correlations due to the low volume fraction in solution and are stable in a wide range of temperatures (5-70 degrees C, pH (1.3-12.4), and ionic strength (0-1.0 M). In contrast, protein (bovine serum albumin) solutions with concentrations in the range of 60-200 mg/mL (4.6-14.5 vol show a pronounced correlation peak in SAXS, which results from the repulsive electrostatic interaction between charged proteins. These protein interactions show significant dependence on ionic strength, as would be expected for an electrostatic interaction (Zhang et al. J. Phys. Chem. B 2007, 111, 251). For a mixture of proteins and gold colloids, the protein-protein interaction changes little upon mixing with OEG-decorated gold colloids. In contrast, the colloid-colloid interaction is found to be strongly dependent on the protein concentration and the size of the colloid itself. Adding protein to a colloidal solution results in an attractive depletion interaction between functionalized gold colloids, and above a critical protein concentration, c*, the colloids form aggregates and flocculate. Adding salt to such mixtures enhances the depletion effect and decreases the critical protein concentration. The aggregation is a reversible process (i.e., diluting the solution leads to dissolution of aggregates). The results also indicate that the charge of the OEG self-assembled monolayer at a curved interface has a rather limited effect on the colloidal stabilization and the repulsive interaction with proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study focuses on the synthesis of amphiphilic block copolymers containing poly(glycerol monomethacrylate) (PGMMA), showing the advantages of a protection/deprotection strategy based on silyl groups. PGMMA blocks were synthesized via ATRP started by a double functional poly(dimethyl siloxane) (PDMS) macroinitiator of molecular weight ≈7000 g mol-1. The resulting triblock copolymers were characterized by low polydispersity (generally ≤1.1) and their aggregation concentration in water was essentially dominated by the PDMS block length (critical aggregation concentration substantially invariant for GMMA degree of polymerization ≥30). For GMMA blocks with DP > 50, the self-assembly in water produced 35-50 nm spherical micelles, while shorter hydrophilic chains produced larger aggregates apparently displaying worm-like morphologies. Block copolymers with long GMMA chains (DP ≈ 200) produced particularly stable micellar aggregates, which were then selected for a preliminary assessment of the possibility of adsorption of plasma proteins (albumin and fibrinogen); using diffusion NMR as an analytical technique, no significant adsorption was recorded both on micelles and on soluble PGMMA employed as a control, indicating the possibility of a "stealth" behaviour. This journal is © 2013 The Royal Society of Chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surfactant enhanced subsurface remediation has gained importance in soil remediation. Since surfactants can be sorbed on soils, the concentration of free surfactant could drop below the critical micelle concentration, CMC, which may reduce the ability of the surfactant to solubilize the contaminants in soils. ^ The main goal of this research was to study the factors affecting the surfactant sorption on soil such as surfactant concentration, soil organic content, and organic contaminants in soil and to determine the organic contaminants removed from soils by surfactant. The results would be served as the basis for the implementation of a future study in the pilot scale and field scale for surfactant enhanced subsurface remediation. ^ This research study investigated the relationship between the organic content of soils and the sorption characteristics of a nonionic surfactant, Triton X-100. The experiments were performed using uncontaminated soils and soil contaminated with naphthalene and decane. The first part of the experiments were conducted in batch mode utilizing surface tension technique to determine the CMC of surfactant Triton X-100 and the effective CMC in the soil/aqueous system. The sorption of Triton X-100 was calculated from the surface tension measurements. The second part of the experiments utilized the SPME/GC/FID technique to determine the concentration of the contaminants solubilized from the soils by the surfactant Triton X-100 at different concentrations. ^ The results indicated that when the concentration of surfactant was lower than the CMC, the amount of surfactant sorbed on soil increased with the increasing surfactant concentration and the surfactant sorption characteristics of the uncontaminated soils could be modeled by the Freundlich isotherm. For the contaminated soils, the amount of surfactant sorbed was higher than those for the uncontaminated soils. The amount of surfactant sorbed on soils also depends on the organic content in the soils. The higher the organic content in the soil, higher is the amount of surfactant sorbed onto the soil. When the concentration of surfactant was higher than the CMC, the amount of surfactant added into the soil/aqueous system will increase the number of micelle and it increase the solubilization of organic contaminant from the soils. The ratio of the moles of organic contaminant solubilized to the moles of surfactant present as micelles is called the molar solubilization ratio (MSR). MSR value for naphthalene was about 0.16 for the soil-water systems. The organic content of soil did not appear to affect MSR for naphthalene. On the other hand, the MSR values for decane were 0.52, 0.39 and 0.38 for soils with 25%, 50% and 75% organic content, respectively. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global niobium production is presently dominated by three operations, Araxá and Catalão (Brazil), and Niobec (Canada). Although Brazil accounts for over 90% of the world’s niobium production, a number of high grade niobium deposits exist worldwide. The advancement of these deposits depends largely on the development of operable beneficiation flowsheets. Pyrochlore, as the primary niobium mineral, is typically upgraded by flotation with amine collectors at acidic pH following a complicated flowsheet with significant losses of niobium. This research compares the typical two stage flotation flowsheet to a direct flotation process (i.e. elimination of gangue pre-flotation) with the objective of circuit simplification. In addition, the use of a chelating reagent (benzohydroxamic acid, BHA) was studied as an alternative collector for fine grained, highly disseminated pyrochlore. For the amine based reagent system, results showed that while comparable at the laboratory scale, when scaled up to the pilot level the direct flotation process suffered from circuit instability because of high quantities of dissolved calcium in the process water due to stream recirculation and fine calcite dissolution, which ultimately depressed pyrochlore. This scale up issue was not observed in pilot plant operation of the two stage flotation process as a portion of the highly reactive carbonate minerals was removed prior to acid addition. A statistical model was developed for batch flotation using BHA on carbonatite ore (0.25% Nb2O5) that could not be effectively upgraded using the conventional amine reagent scheme. Results showed that it was possible to produce a concentrate containing 1.54% Nb2O5 with 93% Nb recovery in ~15% of the original mass. Fundamental studies undertaken included FT-IR and XPS, which showed the adsorption of both the protonized amine and the neutral amine onto the surface of the pyrochlore (possibly at niobium sites as indicated by detected shifts in the Nb3d binding energy). The results suggest that the preferential flotation of pyrochlore over quartz with amines at low pH levels can be attributed to a difference in critical hemimicelle concentration (CHC) values for the two minerals. BHA was found to be absorbed on pyrochlore surfaces by a similar mechanism to alkyl hydroxamic acid. It is hoped that this work will assist in improving operability of existing pyrochlore flotation circuits and help promote the development of niobium deposits globally. Future studies should focus on investigation into specific gangue mineral depressants and inadvertent activation phenomenon related to BHA flotation of gangue minerals.