987 resultados para correlated binary regression
Resumo:
Focuses on a study which introduced an iterative modeling method that combines properties of ordinary least squares (OLS) with hierarchical tree-based regression (HTBR) in transportation engineering. Information on OLS and HTBR; Comparison and contrasts of OLS and HTBR; Conclusions.
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros
Resumo:
Background: It remains unclear whether it is possible to develop a spatiotemporal epidemic prediction model for cryptosporidiosis disease. This paper examined the impact of social economic and weather factors on cryptosporidiosis and explored the possibility of developing such a model using social economic and weather data in Queensland, Australia. ----- ----- Methods: Data on weather variables, notified cryptosporidiosis cases and social economic factors in Queensland were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Three-stage spatiotemporal classification and regression tree (CART) models were developed to examine the association between social economic and weather factors and monthly incidence of cryptosporidiosis in Queensland, Australia. The spatiotemporal CART model was used for predicting the outbreak of cryptosporidiosis in Queensland, Australia. ----- ----- Results: The results of the classification tree model (with incidence rates defined as binary presence/absence) showed that there was an 87% chance of an occurrence of cryptosporidiosis in a local government area (LGA) if the socio-economic index for the area (SEIFA) exceeded 1021, while the results of regression tree model (based on non-zero incidence rates) show when SEIFA was between 892 and 945, and temperature exceeded 32°C, the relative risk (RR) of cryptosporidiosis was 3.9 (mean morbidity: 390.6/100,000, standard deviation (SD): 310.5), compared to monthly average incidence of cryptosporidiosis. When SEIFA was less than 892 the RR of cryptosporidiosis was 4.3 (mean morbidity: 426.8/100,000, SD: 319.2). A prediction map for the cryptosporidiosis outbreak was made according to the outputs of spatiotemporal CART models. ----- ----- Conclusions: The results of this study suggest that spatiotemporal CART models based on social economic and weather variables can be used for predicting the outbreak of cryptosporidiosis in Queensland, Australia.
Resumo:
Background: The enthesis of the plantar fascia is thought to play an important role in stress dissipation. However, the potential link between entheseal thickening characteristic of enthesopathy and the stress-dissipating properties of the intervening plantar fat pad have not been investigated. Purpose: This study was conducted to identify whether plantar fat pad mechanics explain variance in the thickness of the fascial enthesis in individuals with and without plantar enthesopathy. Study Design: Case-control study; Level of evidence, 3. Methods: The study population consisted of 9 patients with unilateral plantar enthesopathy and 9 asymptomatic, individually matched controls. The thickness of the enthesis of the symptomatic, asymptomatic, and a matched control limb was acquired using high-resolution ultrasound. The compressive strain of the plantar fat pad during walking was estimated from dynamic lateral radiographs acquired with a multifunction fluoroscopy unit. Peak compressive stress was simultaneously acquired via a pressure platform. Principal viscoelastic parameters were estimated from subsequent stress-strain curves. Results: The symptomatic fascial enthesis (6.7 ± 2.0 mm) was significantly thicker than the asymptomatic enthesis (4.2 ± 0.4 mm), which in turn was thicker than the enthesis (3.3 ± 0.4 mm) of control limbs (P < .05). There was no significant difference in the mean thickness, peak stress, peak strain, or secant modulus of the plantar fat pad between limbs. However, the energy dissipated by the fat pad during loading and unloading was significantly lower in the symptomatic limb (0.55 ± 0.17) when compared with asymptomatic (0.69 ± 0.13) and control (0.70 ± 0.09) limbs (P < .05). The sonographic thickness of the enthesis was correlated with the energy dissipation ratio of the plantar fat pad (r = .72, P < .05), but only in the symptomatic limb. Conclusion: The energy-dissipating properties of the plantar fat pad are associated with the sonograpic appearance of the enthesis in symptomatic limbs, providing a previously unidentified link between the mechanical behavior of the plantar fat pad and enthesopathy.
Resumo:
Transit Oriented Developments (TODs) are often designed to promote the use of sustainable modes of transport and reduce car usage. This paper investigates the effect of personal and transit characteristics on travel choices of TOD users. Binary logistic regression models were developed to determine the probability of choosing sustainable modes of transport including walking, cycling and public transport. Kelvin Grove Urban Village (KGUV) located in Brisbane, Australia was chosen as case study TOD. The modal splits for employees, students, shoppers and residents showed that 47% of employees, 84% of students, 71% of shoppers and 56% of residents used sustainable modes of transport.
Resumo:
This article presents the results of a study on the association between measured air pollutants and the respiratory health of resident women and children in Lao PDR, one of the least developed countries in Southeast Asia. The study, commissioned by the World Health Organisation, included PM10, CO and NO2 measurements made inside 181 dwellings in nine districts within two provinces in Lao PDR over a 5- month period (12/05–04/06), and respiratory health information (via questionnaires and peak expiratory flow rate (PEFR) measurements) for all residents in the same dwellings. Adjusted odds ratios were calculated separately for each health outcome using binary logistic regression. There was a strong and consistent positive association between NO2 and CO for almost all questionnaire-based health outcomes for both women and children. Women in dwellings with higher measured NO2 had more than triple of the odds of almost all of the health outcomes, and higher concentrations of NO2 and CO were significantly associated with lower PEFR. This study supports a growing literature confirming the role of indoor air pollution in the burden of respiratory disease in developing countries. The results will directly support changes in health and housing policy in Lao PDR.
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.
Resumo:
Background Very few articles have been written about the expression of kallikreins (KLK4 and KLK7) in oral cancers. Therefore, the purpose of this study was to examine and report on their prognostic potential. Methods Eighty archival blocks of primary oral cancers were sectioned and stained for KLK4 and KLK7 by immunohistochemistry. The percentage and the intensity of malignant keratinocyte staining were correlated with patient survival using Cox regression analysis. Results Both kallikreins were expressed strongly in the majority of tumor cells in 68 of 80 cases: these were mostly moderately or poorly differentiated neoplasms. Staining was particularly intense at the infiltrating front. Patients with intense staining had significantly shorter overall survival (p < .05). Conclusion This is the first observation on the patient survival influenced by kallikrein expression in oral carcinoma. The findings are consistent with those for carcinomas at other sites, in particular the prostate and ovary. KLK4 and/or KLK7 immunohistochemistry seems to have diagnostic and prognostic potential in this disease.
Resumo:
There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.
Resumo:
The reduction of CO2 emissions and social exclusion are two key elements of UK transport strategy. Despite intensive research on each theme, little effort has so far been made linking the relationship between emissions and social exclusion. In addition, current knowledge on each theme is limited to urban areas; little research is available on these themes for rural areas. This research contributes to this gap in the literature by analysing 157 weekly activity-travel diary data collected from three case study areas with differential levels of area accessibility and area mobility options, located in rural Northern Ireland. Individual weekly CO2 emission levels from personal travel diaries (both hot exhaust emission and cold-start emission) were calculated using average speed models for different modes of transport. The socio-spatial patterns associated with CO2 emissions were identified using a general linear model whereas binary logistic regression analyses were conducted to identify mode choice behaviour and activity patterns. This research found groups that emitted a significantly lower level of CO2 included individuals living in an area with a higher level of accessibility and mobility, non-car, non-working, and low-income older people. However, evidence in this research also shows that although certain groups (e.g. those working, and residing in an area with a lower level of accessibility) emitted higher levels of CO2, their rate of participation in activities was however found to be significantly lower compared to their counterparts. Based on the study findings, this research highlights the need for both soft (e.g. teleworking) and physical (e.g. accessibility planning) policy measures in rural areas in order to meet government’s stated CO2 reduction targets while at the same time enhancing social inclusion.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.