874 resultados para controversy, critical mediation, enunciation analysis, phenomenology, sociology of public spheres
Resumo:
In the first half of the twentieth century the dematerializing of boundaries between enclosure and exposure problematized traditional expectations of the domestic environment. At the same time, as a space of escalating technological control, the modern domestic interior also offered new potential to redefine the meaning and means of habitation. The inherent tension between these opposing forces is particularly evident in the introduction of new electric lighting technology and applications into the modern domestic interior in the mid-twentieth century. Addressing this nexus of technology and domestic psychology, this article examines the critical role of electric lighting in regulating and framing both the public and private occupation of Philip Johnson's New Canaan estate. Exploring the dialectically paired transparent Glass House and opaque Guest House, this study illustrates how Johnson employed electric light to negotiate the visual environment of the estate as well as to help sustain a highly aestheticized domestic lifestyle. Contextualized within the existing literature, this analysis provides a more nuanced understanding of the New Canaan estate as an expression of Johnson's interests as a designer as well as a subversion of traditional suburban conventions.
Resumo:
The pH and salinity balance mechanisms of crayfish are controlled by a set of transport-related genes. We identified a set of the genes from the gill transcriptome from a freshwater crayfish Cherax quadricarinatus using the Illumina NGS-sequencing technology. We identified and characterized carbonic anhydrase (CA) genes and some other key genes involved in systematic acid-base balance and osmotic/ionic regulation. We also examined expression patterns of some of these genes across different sublethal pH levels [1]. A total of 72,382,710 paired-end Illumina reads were assembled into 36,128 contigs with an average length of 800 bp. About 37% of the contigs received significant BLAST hits and 22% were assigned gene ontology terms. These data will assist in further physiological-genomic studies in crayfish.
Resumo:
A three-dimensional linear, small deformation theory of elasticity solution by the direct method is developed for the free vibration of simply-supported, homogeneous, isotropic, thick rectangular plates. The solution is exact and involves determining a triply infinite sequence of eigenvalues from a doubly infinite set of closed form transcendental equations. As no restrictions are placed on the thickness variation of stresses or displacements, this formulation yields a triply infinite spectrum of frequencies, instead of only one doubly infinite spectrum by thin plate theory and three doubly infinite spectra by Mindlin's thick plate theory. Further, the present analysis yields symmetric thickness modes which neither of the approximate theories can identify. Some numerical results from the two approximate theories are compared with those from the present solution and some important conclusions regarding the effect of the assumptions made in the approximate theories are drawn. The thickness variations of stresses and displacements are also discussed. The analysis is readily extended for laminated plates of isotropic materials. Numerical results are also given for three-ply laminates, and are used to assess the accuracy of thin plate theory predictions for laminates. Extension to general lateral surface conditions and forced vibrations is indicated.
Resumo:
The coexistence curve of the carbondisulphide-acetic anhydride system has been measured. The shape of the curve in the critical region (Xc ≈ 70.89 mole % mole % CS2 and Tc ≈ 30.56° C) is determined by the equation |X′ - X″| = Bx (1 - T/Tc)β with the critical indices β = 0.34 ± 0.01 and Bx = 1.7 ± 0.1 over a range 10-6 < (Tc - T)/Tc < 10-2. The values of β and Bx agree with those of other systems and the theoretical predictions of the Ising model.
Resumo:
A fully self-consistent formulation is described here for the analysis and generation of base-pairs in non-uniform DNA structures, in terms of various local parameters. It is shown that the internal "wedge parameters" are mathematically related to the parameters describing the base-pair orientation with respect to an external helix axis. Hence any one set of three translation and three rotation parameters are necessary and sufficient to completely describe the relative orientation of the base-pairs comprising a step (or doublet). A general procedure is outlined for obtaining an average or global helix axis from the local helix axes for each step. A graphical representation of the local helix axes in the form of a polar plot is also shown and its application for estimating the curvature of oligonucleotide structures is illustrated, with examples of both A and B type structures.
Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases
Resumo:
Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine kinase motifs in plants using the delineated tyrosine phosphorylation motifs from the animal system. The Arabidopsis thaliana genome encodes 57 different protein kinases that have tyrosine kinase motifs. Animal non-receptor tyrosine kinases, SRC, ABL, LYN, FES, SEK, KIN and RAS have structural relationship with putative plant tyrosine kinases. In an extended analysis, animal receptor and non-receptor kinases, Raf and Ras kinases, mixed lineage kinases and plant serine/threonine/tyrosine (STY) protein kinases, form a well-supported group sharing a common origin within the superfamily of STY kinases. We report that plants lack bona fide tyrosine kinases, which raise an intriguing possibility that tyrosine phosphorylation is carried out by dual-specificity STY protein kinases in plants. The distribution pattern of STY protein kinase families on Arabidopsis chromosomes indicates that this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. Genome-wide analysis is supported by the functional expression and characterization of At2g24360 and phosphoproteomics of Arabidopsis. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, anti-phosphotyrosine immunoblotting, phosphoamino acid analysis and peptide mass fingerprinting. These results report the first comprehensive survey of genome-wide and tyrosine phosphoproteome analysis of plant STY protein kinases.
Resumo:
The high cost and extraordinary demands made on sophisticated air defence systems, pose hard challenges to the managers and engineers who plan the operation and maintenance of such systems. This paper presents a study aimed at developing simulation and systems analysis techniques for the effective planning and efficient operation of small fleets of aircraft, typical of the air force of a developing country. We consider an important aspect of fleet management: the problem of resource allocation for achieving prescribed operational effectiveness of the fleet. At this stage, we consider a single flying-base, where the operationally ready aircraft are stationed, and a repair-depot, where the planes are overhauled. An important measure of operational effectiveness is ‘ availability ’, which may be defined as the expected fraction of the fleet fit for use at a given instant. The tour of aircraft in a flying-base, repair-depot system through a cycle of ‘ operationally ready ’ and ‘ scheduled overhaul ’ phases is represented first by a deterministic flow process and then by a cyclic queuing process. Initially the steady-state availability at the flying-base is computed under the assumptions of Poisson arrivals, exponential service times and an equivalent singleserver repair-depot. This analysis also brings out the effect of fleet size on availability. It defines a ‘ small ’ fleet essentially in terms of the important ‘ traffic ’ parameter of service rate/maximum arrival rate.A simulation model of the system has been developed using GPSS to study sensitivity to distributional assumptions, to validate the principal assumptions of the analytical model such as the single-server assumption and to obtain confidence intervals for the statistical parameters of interest.
Resumo:
Homomorphic analysis and pole-zero modeling of electrocardiogram (ECG) signals are presented in this paper. Four typical ECG signals are considered and deconvolved into their minimum and maximum phase components through cepstral filtering, with a view to study the possibility of more efficient feature selection from the component signals for diagnostic purposes. The complex cepstra of the signals are linearly filtered to extract the basic wavelet and the excitation function. The ECG signals are, in general, mixed phase and hence, exponential weighting is done to aid deconvolution of the signals. The basic wavelet for normal ECG approximates the action potential of the muscle fiber of the heart and the excitation function corresponds to the excitation pattern of the heart muscles during a cardiac cycle. The ECG signals and their components are pole-zero modeled and the pole-zero pattern of the models can give a clue to classify the normal and abnormal signals. Besides, storing only the parameters of the model can result in a data reduction of more than 3:1 for normal signals sampled at a moderate 128 samples/s
Resumo:
The material presented in this paper summarizes the progress that has been made in the analysis, design, and testing of concrete structures. The material is summarized in the following documents: 1. Part I - Containment Design Criteria and Loading Combinations - J.D. Stevenson (Stevenson and Associates, Cleveland, Ohio, USA) 2. Part II - Reinforced and Prestressed Concrete Behavior - J. Eibl and M. Curbach (Karlsruhe University, Karlsruhe, Germany) 3. Part III - Concrete Containment Analysis, Design and Related Testing - T.E. Johnson and M.A. Daye (Bechtel Power Corporation, Gaithersburg, Maryland USA) 4. Part IV - Impact and Impulse Loading and Response Prediction - J.D. Riera (School of Engineering - UFRGS, Porto Alegre, RS, Brazil) 5. Part V - Metal Containments and Liner Plate Systems - N.J. Krutzik (Siemens AG, Offenbach Am Main, Germany) 6. Part VI - Prestressed Reactor Vessel Design, Testing and Analysis - J. Nemet (Austrian Research Center, Seibersdorf, Austria) and K.T.S. Iyengar (Indian Institute of Science, Bangalore, India).
Resumo:
The thermodynamics of monodisperse solutions of polymers in the neighborhood of the phase separation temperature is studied by means of Wilson’s recursion relation approach, starting from an effective ϕ4 Hamiltonian derived from a continuum model of a many‐chain system in poor solvents. Details of the chain statistics are contained in the coefficients of the field variables ϕ, so that the parameter space of the Hamiltonian includes the temperature, coupling constant, molecular weight, and excluded volume interaction. The recursion relations are solved under a series of simplifying assumptions, providing the scaling forms of the relevant parameters, which are then used to determine the scaling form of the free energy. The free energy, in turn, is used to calculate the other singular thermodynamic properties of the solution. These are characteristically power laws in the reduced temperature and molecular weight, with the temperature exponents being the same as those of the 3d Ising model. The molecular weight exponents are unique to polymer solutions, and the calculated values compare well with the available experimental data.
Resumo:
Cross-strand disulfides bridge two cysteines in a registered pair of antiparallel beta-strands. A nonredundant data set comprising 5025 polypeptides containing 2311 disulfides was used to study cross-strand disulfides. Seventy-six cross-strand disulfides were found of which 75 and 1 occurred at non-hydrogen-bonded (NHB) and hydrogen-bonded (HB) registered pairs, respectively. Conformational analysis and modeling studies demonstrated that disulfide formation at HB pairs necessarily requires an extremely rare and positive chi(1) value for at least one of the cysteine residues. Disulfides at HB positions also have more unfavorable steric repulsion with the main chain. Thirteen pairs of disulfides were introduced in NHB and HB pairs in four model proteins: leucine binding protein (LBP), leucine, isoleucine, valine binding protein (LIVBP), maltose binding protein (MBP), and Top7. All mutants LIVBP T247C V331C showed disulfide formation either on purification, or on treatment with oxidants. Protein stability in both oxidized and reduced states of all mutants was measured. Relative to wild type, LBP and MBP mutants were destabilized with respect to chemical denaturation, although the sole exposed NHB LBP mutant showed an increase of 3.1 degrees C in T-m. All Top7 mutants were characterized for stability through guanidinium thiocyanate chemical denaturation. Both exposed and two of the three buried NHB mutants were appreciably stabilized. All four HB Top7 mutants were destabilized (Delta Delta G(0) = -3.3 to -6.7 kcal/mol). The data demonstrate that introduction of cross-strand disulfides at exposed NHB pairs is a robust method of improving protein stability. All four exposed Top7 disulfide mutants showed mild redox activity. Proteins 2011; 79: 244-260. (C) 2010 Wiley-Liss, Inc.
Resumo:
For an articulated manipulator with joint rotation constraints, we show that the maximum workspace is not necessarily obtained for equal link lengths but is also determined by the range and mean positions of the joint motions. We present expressions for sectional area, workspace volume, overlap volume and work area in terms of link ratios, mean positions and ranges of joint motion. We present a numerical procedure to obtain the maximum rectangular area that can be embedded in the workspace of an articulated manipulator with joint motion constraints. We demonstrate the use of analytical expressions and the numerical plots in the kinematic design of an articulated manipulator with joint rotation constraints.