944 resultados para control system
Resumo:
Human standing posture is inherently unstable. The postural control system (PCS), which maintains standing posture, is composed of the sensory, musculoskeletal, and central nervous systems. Together these systems integrate sensory afferents and generate appropriate motor efferents to adjust posture. The PCS maintains the body center of mass (COM) with respect to the base of support while constantly resisting destabilizing forces from internal and external perturbations. To assess the human PCS, postural sway during quiet standing or in response to external perturbation have frequently been examined descriptively. Minimal work has been done to understand and quantify the robustness of the PCS to perturbations. Further, there have been some previous attempts to assess the dynamical systems aspects of the PCS or time evolutionary properties of postural sway. However those techniques can only provide summary information about the PCS characteristics; they cannot provide specific information about or recreate the actual sway behavior. This dissertation consists of two parts: part I, the development of two novel methods to assess the human PCS and, part II, the application of these methods. In study 1, a systematic method for analyzing the human PCS during perturbed stance was developed. A mild impulsive perturbation that subjects can easily experience in their daily lives was used. A measure of robustness of the PCS, 1/MaxSens that was based on the inverse of the sensitivity of the system, was introduced. 1/MaxSens successfully quantified the reduced robustness to external perturbations due to age-related degradation of the PCS. In study 2, a stochastic model was used to better understand the human PCS in terms of dynamical systems aspect. This methodology also has the advantage over previous methods in that the sway behavior is captured in a model that can be used to recreate the random oscillatory properties of the PCS. The invariant density which describes the long-term stationary behavior of the center of pressure (COP) was computed from a Markov chain model that was applied to postural sway data during quiet stance. In order to validate the Invariant Density Analysis (IDA), we applied the technique to COP data from different age groups. We found that older adults swayed farther from the centroid and in more stochastic and random manner than young adults. In part II, the tools developed in part I were applied to both occupational and clinical situations. In study 3, 1/MaxSens and IDA were applied to a population of firefighters to investigate the effects of air bottle configuration (weight and size) and vision on the postural stability of firefighters. We found that both air bottle weight and loss of vision, but not size of air bottle, significantly decreased balance performance and increased fall risk. In study 4, IDA was applied to data collected on 444 community-dwelling elderly adults from the MOBILIZE Boston Study. Four out of five IDA parameters were able to successfully differentiate recurrent fallers from non-fallers, while only five out of 30 more common descriptive and stochastic COP measures could distinguish the two groups. Fall history and the IDA parameter of entropy were found to be significant risk factors for falls. This research proposed a new measure for the PCS robustness (1/MaxSens) and a new technique for quantifying the dynamical systems aspect of the PCS (IDA). These new PCS analysis techniques provide easy and effective ways to assess the PCS in occupational and clinical environments.
Resumo:
In this work, a Hardware-in-the-loop test bench is designed. The bench is used to test the behaviour of an electronic control unit used in Maserati to control the dynamics of an air spring system. First the mathematical model of the plant has been defined, then the simulation enviroment and the test environment have been set up. The performed tests succesfully highlighted some bugs in the device under test.
Resumo:
The research project aims to study and develop control techniques for a generalized three-phase and multi-phase electric drive able to efficiently manage most of the drive types available for traction application. The generalized approach is expanded to both linear and non- linear machines in magnetic saturation region starting from experimental flux characterization and applying the general inductance definition. The algorithm is able to manage fragmented drives powered from different batteries or energy sources and will be able to ensure operability even in case of faults in parts of the system. The algorithm was tested using model-in-the-loop in software environment and then applied on experimental test benches with collaboration of an external company.
Resumo:
This paper presents a compact embedded fuzzy system for three-phase induction-motor scalar speed control. The control strategy consists in keeping constant the voltage-frequency ratio of the induction-motor supply source. A fuzzy-control system is built on a digital signal processor, which uses speed error and speed-error variation to change both the fundamental voltage amplitude and frequency of a sinusoidal pulsewidth modulation inverter. An alternative optimized method for embedded fuzzy-system design is also proposed. The controller performance, in relation to reference and load-torque variations, is evaluated by experimental results. A comparative analysis with conventional proportional-integral controller is also achieved.
Resumo:
The integrated control of nitrate recirculation and external carbon addition in a predenitrification biological wastewater treatment system is studied. The proposed control structure consists of four feedback control loops, which manipulate the nitrate recirculation and the carbon dosage flows in a highly coordinated manner such that the consumption of external carbon is minimised while the nitrate discharge limits (based on both grab and composite samples) are met. The control system requires the measurement of the nitrate concentrations at the end of both the anoxic and the aerobic zones. Distinct from ordinary control systems, which typically minimise the variation in the controlled variables, the proposed control system essentially maximises the diurnal variation of the effluent nitrate concentration and through this maximises the use of influent COD for denitrification, thus minimising the requirement for external carbon source. Simulation studies using a commonly accepted simulation benchmark show that the controlled system consistently achieves the designated effluent quality with minimum costs.
Resumo:
This review describes current problems, trends and prospects of the quasi-automatic light control system. The lighting systems of million cities.
Resumo:
In recent years, the network vulnerability to natural hazards has been noticed. Moreover, operating on the limits of the network transmission capabilities have resulted in major outages during the past decade. One of the reasons for operating on these limits is that the network has become outdated. Therefore, new technical solutions are studied that could provide more reliable and more energy efficient power distributionand also a better profitability for the network owner. It is the development and price of power electronics that have made the DC distribution an attractive alternative again. In this doctoral thesis, one type of a low-voltage DC distribution system is investigated. Morespecifically, it is studied which current technological solutions, used at the customer-end, could provide better power quality for the customer when compared with the current system. To study the effect of a DC network on the customer-end power quality, a bipolar DC network model is derived. The model can also be used to identify the supply parameters when the V/kW ratio is approximately known. Although the model provides knowledge of the average behavior, it is shown that the instantaneous DC voltage ripple should be limited. The guidelines to choose an appropriate capacitance value for the capacitor located at the input DC terminals of the customer-end are given. Also the structure of the customer-end is considered. A comparison between the most common solutions is made based on their cost, energy efficiency, and reliability. In the comparison, special attention is paid to the passive filtering solutions since the filter is considered a crucial element when the lifetime expenses are determined. It is found out that the filter topology most commonly used today, namely the LC filter, does not provide economical advantage over the hybrid filter structure. Finally, some of the typical control system solutions are introduced and their shortcomings are presented. As a solution to the customer-end voltage regulation problem, an observer-based control scheme is proposed. It is shown how different control system structures affect the performance. The performance meeting the requirements is achieved by using only one output measurement, when operating in a rigid network. Similar performance can be achieved in a weak grid by DC voltage measurement. An additional improvement can be achieved when an adaptive gain scheduling-based control is introduced. As a conclusion, the final power quality is determined by a sum of various factors, and the thesis provides the guidelines for designing the system that improves the power quality experienced by the customer.
Resumo:
The awareness and concern of our environment together with legislation have set more and more tightening demands for energy efficiency of non-road mobile machinery (NRMM). Integrated electro-hydraulic energy converter (IEHEC) has been developed in Lappeenranta University of Technology (LUT). The elimination of resistance flow, and the recuperation of energy makes it very efficient alternative. The difficulties of IEHEC machine to step to the market has been the requirement of one IEHEC machine per one actuator. The idea is to switch IEHEC between two actuators of log crane using fast on/off valves. The control system architecture is introduced. The system has been simulated in co-simulation using two different software. The simulated responses of pump-controlled system is compared to the responses of the conventional valve-controlled system.
Resumo:
This paper describes the design, implementation and testing of an intelligent knowledge-based supervisory control (IKBSC) system for a hot rolling mill process. A novel architecture is used to integrate an expert system with an existing supervisory control system and a new optimization methodology for scheduling the soaking pits in which the material is heated prior to rolling. The resulting IKBSC system was applied to an aluminium hot rolling mill process to improve the shape quality of low-gauge plate and to optimise the use of the soaking pits to reduce energy consumption. The results from the trials demonstrate the advantages to be gained from the IKBSC system that integrates knowledge contained within data, plant and human resources with existing model-based systems. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Chair of Transportation and Ware-housing at the University of Dortmund together with its industrial partner has developed and implemented a decentralized control system based on embedded technology and Internet standards. This innovative, highly flexible system uses autonomous software modules to control the flow of unit loads in real-time. The system is integrated into Chair’s test facility consisting of a wide range of conveying and sorting equipment. It is built for proof of concept purposes and will be used for further research in the fields of decentralized automation and embedded controls. This presentation describes the implementation of this decentralized control system.