979 resultados para conformational control element
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the effect of unilateral angular misfit of 100 Km on stress distribution of implant-supported single crowns with ceramic veneering and gold framework by three-dimensional finite element analysis. Two three-dimensional models representing a maxillary section of premolar region were constructed: group 1 (control)-crown completely adapted to the implant and group 2-crown with unilateral angular misfit of 100 Km. A vertical force of 100 N was applied on 2 centric points of the crown. The von Mises stress was used as an analysis criterion. The stress values and distribution in the main maps (204.4 MPa for group 1 and 205.0 MPa for group 2) and in the other structures (aesthetic veneering, framework, retention screw, implant, and bone tissue) were similar for both groups. The highest stress values were observed between the first and second threads of the retention screw. Considering the bone tissue, the highest stress values were exhibited in the peri-implant cortical bone. The unilateral angular misfit of 100 Km did not influence the stress distribution on the implant-supported prosthesis under static loading.
Resumo:
The misfit between prostheses and implants is a clinical reality, but the level that can be accepted without causing mechanical or biologic problem is not well defined. This study investigates the effect of different levels of unilateral angular misfit prostheses in the prosthesis/implant/retaining screw system and in the surrounding bone using finite element analysis. Four models of a two-dimensional finite element were constructed: group I (control), prosthesis that fit the implant; groups 2 to 4, prostheses with unilateral angular misfit of 50, 100, and 200 mu m, respectively. A load of 133 N was applied with a 30-degree angulation and off-axis at 2 mm from the long axis of the implant at the opposite direction of misfit on the models. Taking into account the increase of the angular misfit, the stress maps showed a gradual increase of prosthesis stress and uniform stress in the implant and trabecular bone. Concerning the displacement, an inclination of the system due to loading and misfit was observed. The decrease of the unilateral contact between prosthesis and implant leads to the displacement of the entire system, and distribution and magnitude alterations of the stress also occurred.
Resumo:
This finite element analysis compared stress distribution on complete dentures and implant-retained overdentures with different attachment systems. Four models of edentulous mandible were constructed: group A (control), complete denture; group B, overdenture retained by 2 splinted implants with bar-clip system; group C, overdenture retained by 2 unsplinted implants with o'ring system; and group D, overdenture retained by 2 splinted implants with bar-clip and 2 distally placed o'ring system. Evaluation was performed on Ansys software, with 100-N vertical load applied on central incisive teeth. The lowest maximum general stress value (in megapascal) was observed in group A (64.305) followed by groups C (119.006), D (258.650), and B (349.873). The same trend occurred it) supporting tissues with the highest stress value for cortical bone. Unsplinted implants associated with the o'ring attachment system showed the lowest maximum stress values among all overdenture groups. Furthermore, o'ring system also improved stress distribution when associated with bar-clip system.
Resumo:
Purpose: Three-dimensional finite element analysis was used to evaluate the effect of vertical and angular misfit in three-piece implant-supported screw-retained fixed prostheses on the biomechanical response in the peri-implant bone, implants, and prosthetic components. Materials and Methods: Four three-dimensional models were fabricated to represent a right posterior mandibular section with one implant in the region of the second premolar (2PM) and another in the region of the second molar (2M). The implants were splinted by a three-piece implant-supported metal-ceramic prosthesis and differed according to the type of misfit, as represented by four different models: Control = prosthesis with complete fit to the implants; UAM (unilateral angular misfit) = prosthesis presenting unilateral angular misfit of 100 pm in the mesial region of the 2M; UVM (unilateral vertical misfit) = prosthesis presenting unilateral vertical misfit of 100 pm in the mesial region of the 2M; and TVM (total vertical misfit) = prosthesis presenting total vertical misfit of 100 pm in the platform of the framework in the 2M. A vertical load of 400 N was distributed and applied on 12 centric points by the software Ansys, ie, a vertical load of 150 N was applied to each molar in the prosthesis and a vertical load of 100 N was applied at the 2PM. Results: The stress values and distribution in peri-implant bone tissue were similar for all groups. The models with misfit exhibited different distribution patterns and increased stress magnitude in comparison to the control. The highest stress values in group UAM were observed in the implant body and retention screw. The groups UVM and TVM exhibited high stress values in the platform of the framework and the implant hexagon, respectively. Conclusions: The three types of misfit influenced the magnitude and distribution of stresses. The influence of misfit on peri-implant bone tissue was modest. Each type of misfit increased the stress values in different regions of the system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:788-796
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The non-homogenous aspect of periodontal ligament (PDL) has been examined using finite element analysis (FEA) to better simulate PDL behavior. The aim of this study was to assess, by 2-D FEA, the influence of non-homogenous PDL on the stress distribution when the free-end saddle removable partial denture (RPD) is partially supported by an osseointegrated implant. Material and Methods: Six finite element (FE) models of a partially edentulous mandible were created to represent two types of PDL (non-homogenous and homogenous) and two types of RPD (conventional RPD, supported by tooth and fibromucosa; and modified RPD, supported by tooth and implant [10.00x3.75 mm]). Two additional FE models without RPD were used as control models. The non-homogenous PDL was modeled using beam elements to simulate the crest, horizontal, oblique and apical fibers. The load (50 N) was applied in each cusp simultaneously. Regarding boundary conditions the border of alveolar ridge was fixed along the x axis. The FE software (Ansys 10.0) was used to compute the stress fields, and the von Mises stress criterion (sigma vM) was applied to analyze the results. Results: The peak of sigma vM in non-homogenous PDL was higher than that for the homogenous condition. The benefits of implants were enhanced for the non-homogenous PDL condition, with drastic sigma vM reduction on the posterior half of the alveolar ridge. The implant did not reduce the stress on the support tooth for both PDL conditions. Conclusion: The PDL modeled in the non-homogeneous form increased the benefits of the osseointegrated implant in comparison with the homogeneous condition. Using the non-homogenous PDL, the presence of osseointegrated implant did not reduce the stress on the supporting tooth.
Resumo:
States that control is of the essence in cybernetics. Summarizes the dynamic equations for a flexible one-link manipulator moving in the horizontal plane. Employs the finite element method, based on elementary beam theory, during the process of formulation. Develops and instruments a one-link flexible manipulator in order to control its vibration modes. Uses a simple second-order vibration model which permits vibrations on the rod to be estimated using the hub angle. The validation of the dynamic model and the structural analysis of the flexible manipulator is reached using proper infrared cameras and active light sources for determining actual positions of objects in space. Shows that the performance of the control is satisfactory, even under perturbation action.
Resumo:
The use of transposable elements (TEs) as genetic drive mechanisms was explored using Drosophila melanogaster as a model system. Alternative strategies, employing autonomous and nonautonomous P element constructs were compared for their efficiency in driving the ry(+) allele into populations homozygous for a ry(-) allele at the genomic rosy locus. Transformed flies were introduced at 1%, 5%, and 10% starting frequencies to establish a series of populations that were monitored over the course of 40 generations, using both phenotypic and molecular assays. The transposon-borne ry(+) marker allele spread rapidly in almost all populations when introduced at 5% and 10% seed frequencies, but 1% introductions frequently failed to become established. A similar initial rapid increase in frequency of the ry(+) transposon occurred in several control populations lacking a source of transposase. Constructs carrying ry(+) markers also increased to moderate frequencies in the absence of selection on the marker. The results of Southern and in situ hybridization studies indicated a strong inverse relationship between the degree of conservation of construct integrity and transposition frequency. These finding have relevance to possible future applications of transposons as genetic drive mechanisms.
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
A finite element modeling of an intelligent truss structure with piezoelectric stack actuators for the purpose of active damping and structural vibration attenuation is presented. This paper concerns with the following issues aspects: the design of intelligent truss structure considering electro-mechanical coupling between the host structure and piezoelectric stack actuators; the H 2 norm approach to search for optimal placement of actuators and sensors; and finally some aspects in robust control techniques. The electro-mechanical behavior of piezoelectric elements is directly related to the successful application of the actuators in truss structures. In order to achieve the desired damping in the interested bandwidth frequency it is used the H ∞ output feedback solved by convex optimization. The constraints to be reached are written by linear matrix inequalities (LMI). The paper concludes with a numerical example, using Matlab and Simulink, in a cantilevered, 2-bay space truss structure. The results demonstrated the approach applicability.
Resumo:
Background: Data on stress distribution in tooth-restoration interface with different ceramic restorative materials are limited. The aim of this chapter was to assess the stress distribution in the interface of ceramic restorations with laminate veneer or full-coverage crown with two different materials (lithium dissilicate and densely sintered aluminum oxide) under different loading areas through finite element analysis. Materials and Methods: Six two-dimensional finite element models were fabricated with different restorations on natural tooth: laminate veneer (IPS Empress, IPS Empress Esthetic and Procera AllCeram) or full-coverage crown (IPS e.max Press and Procera AllCeram). Two different loading areas (L) (50N) were also determined: palatal surface at 45° in relation to the long axis of tooth (L1) and perpendicular to the incisal edge (L2). A model with higid natural tooth was used as control. von Mises equivalent stress (σ vM) and maximum principal stress (σ max) were obtained on Ansys software. Results: The presence of ceramic restoration increased σ vM and σ max in the adhesive interface, mainly for the aluminum oxide (Procera AllCeram system) restorations. The full-coverage crowns generated higher stress in the adhesive interface under L1 while the same result was observed for the laminate veneers under L2. Conclusions: Lithium dissilicate and densely sintered aluminum oxide restorations exhibit different behavior due to different mechanical properties and loading conditions. © 2011 Nova Science Publishers, Inc.
Resumo:
All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si) is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)