912 resultados para cone-beam CT
Resumo:
PURPOSE To investigate the adequacy of potential sites for insertion of orthodontic mini-implants (OMIs) in the anterior alveolar region (delimited by the first premolars) through a systematic review of studies that used computed tomography (CT) or cone beam CT (CBCT) to assess anatomical hard tissue parameters, such as bone thickness, available space, and bone density. MATERIALS AND METHODS MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews were searched to identify all relevant papers published between 1980 and September 2011. An extensive search strategy was performed that included the key words "computerized (computed) tomography" and "mini-implants." Information was extracted from the eligible articles for three anatomical areas: maxillary anterior buccal, maxillary anterior palatal, and mandibular anterior buccal. Quantitative data obtained for each anatomical variable under study were evaluated qualitatively with a scoring system. RESULTS Of the 790 articles identified by the search, 8 were eligible to be included in the study. The most favorable area for OMI insertion in the anterior maxilla (buccally and palatally) and mandible is between the canine and the first premolar. The best alternative area in the maxilla (buccally) and the mandible is between the lateral incisor and the canine, while in the maxillary palatal area it is between the central incisors or between the lateral incisor and the canine. CONCLUSIONS Although there is considerable heterogeneity among studies, there is a good level of agreement regarding the optimal site for OMI placement in the anterior region among investigations of anatomical hard tissue parameters based on CT or CBCT scans. In this context, the area between the lateral incisor and the first premolar is the most favorable. However, interroot distance seems to be a critical factor that should be evaluated carefully.
Resumo:
HYPOTHESIS A previously developed image-guided robot system can safely drill a tunnel from the lateral mastoid surface, through the facial recess, to the middle ear, as a viable alternative to conventional mastoidectomy for cochlear electrode insertion. BACKGROUND Direct cochlear access (DCA) provides a minimally invasive tunnel from the lateral surface of the mastoid through the facial recess to the middle ear for cochlear electrode insertion. A safe and effective tunnel drilled through the narrow facial recess requires a highly accurate image-guided surgical system. Previous attempts have relied on patient-specific templates and robotic systems to guide drilling tools. In this study, we report on improvements made to an image-guided surgical robot system developed specifically for this purpose and the resulting accuracy achieved in vitro. MATERIALS AND METHODS The proposed image-guided robotic DCA procedure was carried out bilaterally on 4 whole head cadaver specimens. Specimens were implanted with titanium fiducial markers and imaged with cone-beam CT. A preoperative plan was created using a custom software package wherein relevant anatomical structures of the facial recess were segmented, and a drill trajectory targeting the round window was defined. Patient-to-image registration was performed with the custom robot system to reference the preoperative plan, and the DCA tunnel was drilled in 3 stages with progressively longer drill bits. The position of the drilled tunnel was defined as a line fitted to a point cloud of the segmented tunnel using principle component analysis (PCA function in MatLab). The accuracy of the DCA was then assessed by coregistering preoperative and postoperative image data and measuring the deviation of the drilled tunnel from the plan. The final step of electrode insertion was also performed through the DCA tunnel after manual removal of the promontory through the external auditory canal. RESULTS Drilling error was defined as the lateral deviation of the tool in the plane perpendicular to the drill axis (excluding depth error). Errors of 0.08 ± 0.05 mm and 0.15 ± 0.08 mm were measured on the lateral mastoid surface and at the target on the round window, respectively (n =8). Full electrode insertion was possible for 7 cases. In 1 case, the electrode was partially inserted with 1 contact pair external to the cochlea. CONCLUSION The purpose-built robot system was able to perform a safe and reliable DCA for cochlear implantation. The workflow implemented in this study mimics the envisioned clinical procedure showing the feasibility of future clinical implementation.
Resumo:
PURPOSE The objectives of this systematic review are (1) to quantitatively estimate the esthetic outcomes of implants placed in postextraction sites, and (2) to evaluate the influence of simultaneous bone augmentation procedures on these outcomes. MATERIALS AND METHODS Electronic and manual searches of the dental literature were performed to collect information on esthetic outcomes based on objective criteria with implants placed after extraction of maxillary anterior and premolar teeth. All levels of evidence were accepted (case series studies required a minimum of 5 cases). RESULTS From 1,686 titles, 114 full-text articles were evaluated and 50 records included for data extraction. The included studies reported on single-tooth implants adjacent to natural teeth, with no studies on multiple missing teeth identified (6 randomized controlled trials, 6 cohort studies, 5 cross-sectional studies, and 33 case series studies). Considerable heterogeneity in study design was found. A meta-analysis of controlled studies was not possible. The available evidence suggests that esthetic outcomes, determined by esthetic indices (predominantly the pink esthetic score) and positional changes of the peri-implant mucosa, may be achieved for single-tooth implants placed after tooth extraction. Immediate (type 1) implant placement, however, is associated with a greater variability in outcomes and a higher frequency of recession of > 1 mm of the midfacial mucosa (eight studies; range 9% to 41% and median 26% of sites, 1 to 3 years after placement) compared to early (type 2 and type 3) implant placement (2 studies; no sites with recession > 1 mm). In two retrospective studies of immediate (type 1) implant placement with bone graft, the facial bone wall was not detectable on cone beam CT in 36% and 57% of sites. These sites had more recession of the midfacial mucosa compared to sites with detectable facial bone. Two studies of early implant placement (types 2 and 3) combined with simultaneous bone augmentation with GBR (contour augmentation) demonstrated a high frequency (above 90%) of facial bone wall visible on CBCT. Recent studies of immediate (type 1) placement imposed specific selection criteria, including thick tissue biotype and an intact facial socket wall, to reduce esthetic risk. There were no specific selection criteria for early (type 2 and type 3) implant placement. CONCLUSIONS Acceptable esthetic outcomes may be achieved with implants placed after extraction of teeth in the maxillary anterior and premolar areas of the dentition. Recession of the midfacial mucosa is a risk with immediate (type 1) placement. Further research is needed to investigate the most suitable biomaterials to reconstruct the facial bone and the relationship between long-term mucosal stability and presence/absence of the facial bone, the thickness of the facial bone, and the position of the facial bone crest.
Resumo:
HYPOTHESIS To evaluate the feasibility and the results of insertion of two types of electrode arrays in a robotically assisted surgical approach. BACKGROUND Recent publications demonstrated that robot-assisted surgery allows the implantation of free-fitting electrode arrays through a cochleostomy drilled via a narrow bony tunnel (DCA). We investigated if electrode arrays from different manufacturers could be used with this approach. METHODS Cone-beam CT imaging was performed on fivecadaveric heads after placement of fiducial screws. Relevant anatomical structures were segmented and the DCA trajectory, including the position of the cochleostomy, was defined to target the center of the scala tympani while reducing the risk of lesions to the facial nerve. Med-El Flex 28 and Cochlear CI422 electrodes were implanted on both sides, and their position was verified by cone-beam CT. Finally, temporal bones were dissected to assess the occurrence of damage to anatomical structures during DCA drilling. RESULTS The cochleostomy site was directed in the scala tympani in 9 of 10 cases. The insertion of electrode arrays was successful in 19 of 20 attempts. No facial nerve damage was observed. The average difference between the planned and the postoperative trajectory was 0.17 ± 0.19 mm at the level of the facial nerve. The average depth of insertion was 305.5 ± 55.2 and 243 ± 32.1 degrees with Med-El and Cochlear arrays, respectively. CONCLUSIONS Robot-assisted surgery is a reliable tool to allow cochlear implantation through a cochleostomy. Technical solutions must be developed to improve the electrode array insertion using this approach.
Resumo:
Este estudo avaliou os efeitos esqueléticos da tração reversa da maxila utilizando imagens 2D (telerradiografia lateral) geradas a partir da tomografia de feixe cônico (imagens 3D). A amostra foi composta por 20 crianças (15 do gênero feminino, e 5 do masculino), com idade variando de 5,6 a 10,7 anos que apresentavam má-oclusão de Classe III de Angle. A tomografia foi realizada antes do tratamento (T1) e logo após o tratamento (T2). O tratamento foi realizado por meio da tração reversa da maxila utilizando-se o aparelho expansor Hyrax associado à máscara facial individualizada, com força de 600 a 800g de cada lado, durante 14 horas por dia. A correção da relação de caninos em Classe I ou com sua sobrecorreção em Classe II foi obtida após 4 a 8 meses de tratamento. Para verificar o erro sistemático e casual foi utilizado o teste t pareado e a fórmula de Dahlberg, respectivamente. O teste t pareado (p<0,05) mostrou diferença significante entre as medidas cefalométricas obtidas em T1 e T2. Na maxila houve aumento do SNA 2,2°, A-Nperp 1,47mm e em Co-A 2,58mm. Na mandíbula, SNB diminuiu -0,54° e P-Nperp, -1,45mm, enquanto Co-Gn aumentou 1,04mm. Houve melhora na relação maxilo-mandibular ANB 2,74° e Wits 4,23mm. As variáveis GoGn.SN, Gn.SN, FH.Md, Mx.Md, e AFAI aumentaram demonstrando que houve uma rotação da mandíbula no sentido horário. O plano palatino rotacionou no sentido anti-horário. Pode se concluir que o tratamento de tração reversa da maxila na idade precoce promoveu uma melhora na relação maxilo-mandibular devido a um avanço da maxila e um deslocamento da mandíbula para baixo e para trás.
Resumo:
Tra le patologie ossee attualmente riconosciute, l’osteoporosi ricopre il ruolo di protagonista data le sua diffusione globale e la multifattorialità delle cause che ne provocano la comparsa. Essa è caratterizzata da una diminuzione quantitativa della massa ossea e da alterazioni qualitative della micro-architettura del tessuto osseo con conseguente aumento della fragilità di quest’ultimo e relativo rischio di frattura. In campo medico-scientifico l’imaging con raggi X, in particolare quello tomografico, da decenni offre un ottimo supporto per la caratterizzazione ossea; nello specifico la microtomografia, definita attualmente come “gold-standard” data la sua elevata risoluzione spaziale, fornisce preziose indicazioni sulla struttura trabecolare e corticale del tessuto. Tuttavia la micro-CT è applicabile solo in-vitro, per cui l’obiettivo di questo lavoro di tesi è quello di verificare se e in che modo una diversa metodica di imaging, quale la cone-beam CT (applicabile invece in-vivo), possa fornire analoghi risultati, pur essendo caratterizzata da risoluzioni spaziali più basse. L’elaborazione delle immagini tomografiche, finalizzata all’analisi dei più importanti parametri morfostrutturali del tessuto osseo, prevede la segmentazione delle stesse con la definizione di una soglia ad hoc. I risultati ottenuti nel corso della tesi, svolta presso il Laboratorio di Tecnologia Medica dell’Istituto Ortopedico Rizzoli di Bologna, mostrano una buona correlazione tra le due metodiche quando si analizzano campioni definiti “ideali”, poiché caratterizzati da piccole porzioni di tessuto osseo di un solo tipo (trabecolare o corticale), incluso in PMMA, e si utilizza una soglia fissa per la segmentazione delle immagini. Diversamente, in casi “reali” (vertebre umane scansionate in aria) la stessa correlazione non è definita e in particolare è da escludere l’utilizzo di una soglia fissa per la segmentazione delle immagini.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE: The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. STUDY DESIGN: Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. RESULTS: The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. CONCLUSIONS: The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.
Resumo:
The inferior alveolar nerve (IAN) lies within the mandibular canal, named inferior alveolar canal in literature. The detection of this nerve is important during maxillofacial surgeries or for creating dental implants. The poor quality of cone-beam computed tomography (CBCT) and computed tomography (CT) scans and/or bone gaps within the mandible increase the difficulty of this task, posing a challenge to human experts who are going to manually detect it and resulting in a time-consuming task.Therefore this thesis investigates two methods to automatically detect the IAN: a non-data driven technique and a deep-learning method. The latter tracks the IAN position at each frame leveraging detections obtained with the deep neural network CenterNet, fined-tuned for our task, and temporal and spatial information.
Resumo:
Mestrado em Radioterapia.
Resumo:
BACKGROUND: Cone-beam computed tomography (CBCT) image-guided radiotherapy (IGRT) systems are widely used tools to verify and correct the target position before each fraction, allowing to maximize treatment accuracy and precision. In this study, we evaluate automatic three-dimensional intensity-based rigid registration (RR) methods for prostate setup correction using CBCT scans and study the impact of rectal distension on registration quality. METHODS: We retrospectively analyzed 115 CBCT scans of 10 prostate patients. CT-to-CBCT registration was performed using (a) global RR, (b) bony RR, or (c) bony RR refined by a local prostate RR using the CT clinical target volume (CTV) expanded with 1-to-20-mm varying margins. After propagation of the manual CT contours, automatic CBCT contours were generated. For evaluation, a radiation oncologist manually delineated the CTV on the CBCT scans. The propagated and manual CBCT contours were compared using the Dice similarity and a measure based on the bidirectional local distance (BLD). We also conducted a blind visual assessment of the quality of the propagated segmentations. Moreover, we automatically quantified rectal distension between the CT and CBCT scans without using the manual CBCT contours and we investigated its correlation with the registration failures. To improve the registration quality, the air in the rectum was replaced with soft tissue using a filter. The results with and without filtering were compared. RESULTS: The statistical analysis of the Dice coefficients and the BLD values resulted in highly significant differences (p<10(-6)) for the 5-mm and 8-mm local RRs vs the global, bony and 1-mm local RRs. The 8-mm local RR provided the best compromise between accuracy and robustness (Dice median of 0.814 and 97% of success with filtering the air in the rectum). We observed that all failures were due to high rectal distension. Moreover, the visual assessment confirmed the superiority of the 8-mm local RR over the bony RR. CONCLUSION: The most successful CT-to-CBCT RR method proved to be the 8-mm local RR. We have shown the correlation between its registration failures and rectal distension. Furthermore, we have provided a simple (easily applicable in routine) and automatic method to quantify rectal distension and to predict registration failure using only the manual CT contours.
Resumo:
In this report, we present a case of myositis ossificans traumatica (MOT) of the medial pterygoid muscle that had developed after mandibular block anesthesia administered for endodontic treatment of the lower right second molar, demonstrating typical features of this condition. MOT should be considered as a differential diagnosis when there is severe limitation of jaw opening and an associated trauma. Panoramic radiographs and axial and coronal computed tomography (CT) scans can effectively delineate the calcified mass. Other imaging studies that may be helpful include magnetic resonance imaging (MRI), bone scans, and ultrasound. As shown in our case, calcified masses were found in the right mandibular angle, which severely limited jaw opening. Some earlier reported cases of MOT were treated by extraoral surgical approaches with complete removal of the evolving muscle. The aim of this case report is to present only the diagnostic imaging aspects of myositis ossificans traumatica.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)