900 resultados para computational statistics
Resumo:
A computational study of the isomers of tetrafluorinated [2.2]cyclophanes persubstituted in one ring, namely F-4-[2.2]paracyclophane (4), F-4-anti-[2.2]metacyclophane (5a), F-4-syn-[2.2]metacyclophane (5b), and F-4-[2.2]metaparacyclophane (6a and 6b), was carried out. The effects of fluorination on the geometries, relative energies, local and global aromaticity, and strain energies of the bridges and rings were investigated. An analysis of the electron density by B3PW91/6-31+G(d,p), B3LYP/6-31+G(d,p), and MP2/6-31+G(d,p) was carried out using the natural bond orbitals (NBO), natural steric analysis (NSA), and atoms in molecules (AIM) methods. The analysis of frontier molecular orbitals (MOs) was also employed. The results indicated that the molecular structure of [2.2]paracyclophane is the most affected by the fluorination. Isodesmic reactions showed that the fluorinated rings are more strained than the nonfluorinated ones. The NICS, HOMA, and PDI criteria evidenced that the fluorination affects the aromaticity of both the fluorinated and the nonfluorinated rings. The NBO and NSA analyses gave an indication that the fluorination increases not only the number of through-space interactions but also their magnitude. The AIM analysis suggested that the through-space interactions are restricted to the F-4-[2.2]metacyclophanes. In addition, the atomic properties, computed over the atomic basins, shave evidence that not only the substitution, but also the position of the bridges could affect the atomic charges. the first atomic moments, and the atomic volumes.
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The main problem with current approaches to quantum computing is the difficulty of establishing and maintaining entanglement. A Topological Quantum Computer (TQC) aims to overcome this by using different physical processes that are topological in nature and which are less susceptible to disturbance by the environment. In a (2+1)-dimensional system, pseudoparticles called anyons have statistics that fall somewhere between bosons and fermions. The exchange of two anyons, an effect called braiding from knot theory, can occur in two different ways. The quantum states corresponding to the two elementary braids constitute a two-state system allowing the definition of a computational basis. Quantum gates can be built up from patterns of braids and for quantum computing it is essential that the operator describing the braiding-the R-matrix-be described by a unitary operator. The physics of anyonic systems is governed by quantum groups, in particular the quasi-triangular Hopf algebras obtained from finite groups by the application of the Drinfeld quantum double construction. Their representation theory has been described in detail by Gould and Tsohantjis, and in this review article we relate the work of Gould to TQC schemes, particularly that of Kauffman.
Resumo:
Context Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulatioin in BD. Objective: To use tract-based spatial statistics (TBSS) to examine VVM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Design: Cross-sectional, case-control, whole-brain DTI using TBSS. Setting: University research institute. Participants: Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type 1 (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Main Outcome Measures: Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Results: Subjects with BD vs controls had significantly greater FA (t > 3.0, P <=.05 corrected) in the left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P <=.05 corrected) in the right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P <.01) were found between age and FA in bilateral uncinate fasciculi and in the right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P <.01) was observed in the left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. Conclusions: To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that diminished with age and with alcohol or other drug abuse, as well as reduced WM FA in the right OMPFC. Mood stabilizers and depressed episode reduced WM FA in left-sided sensory visual processing regions among subjects with BD. Abnormal right vs left asymmetry in FA in OMPFC WM among subjects with BD, likely reflecting increased proportions of left-sided longitudinally aligned and right-sided obliquely aligned myelinated fibers, may represent a biologic mechanism for mood dysregulation in BD.
Resumo:
Human leukocyte antigen (HLA) haplotypes are frequently evaluated for population history inferences and association studies. However, the available typing techniques for the main HLA loci usually do not allow the determination of the allele phase and the constitution of a haplotype, which may be obtained by a very time-consuming and expensive family-based segregation study. Without the family-based study, computational inference by probabilistic models is necessary to obtain haplotypes. Several authors have used the expectation-maximization (EM) algorithm to determine HLA haplotypes, but high levels of erroneous inferences are expected because of the genetic distance among the main HLA loci and the presence of several recombination hotspots. In order to evaluate the efficiency of computational inference methods, 763 unrelated individuals stratified into three different datasets had their haplotypes manually defined in a family-based study of HLA-A, -B, -DRB1 and -DQB1 segregation, and these haplotypes were compared with the data obtained by the following three methods: the Expectation-Maximization (EM) and Excoffier-Laval-Balding (ELB) algorithms using the arlequin 3.11 software, and the PHASE method. When comparing the methods, we observed that all algorithms showed a poor performance for haplotype reconstruction with distant loci, estimating incorrect haplotypes for 38%-57% of the samples considering all algorithms and datasets. We suggest that computational haplotype inferences involving low-resolution HLA-A, HLA-B, HLA-DRB1 and HLA-DQB1 haplotypes should be considered with caution.
Resumo:
A mixture model incorporating long-term survivors has been adopted in the field of biostatistics where some individuals may never experience the failure event under study. The surviving fractions may be considered as cured. In most applications, the survival times are assumed to be independent. However, when the survival data are obtained from a multi-centre clinical trial, it is conceived that the environ mental conditions and facilities shared within clinic affects the proportion cured as well as the failure risk for the uncured individuals. It necessitates a long-term survivor mixture model with random effects. In this paper, the long-term survivor mixture model is extended for the analysis of multivariate failure time data using the generalized linear mixed model (GLMM) approach. The proposed model is applied to analyse a numerical data set from a multi-centre clinical trial of carcinoma as an illustration. Some simulation experiments are performed to assess the applicability of the model based on the average biases of the estimates formed. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
The earnings gap between men and women has remained comparatively stable at an aggregate level over the 1990s in Australia. From one perspective, this is a reminder of the considerable difficulty of addressing wage differentials once the most overt forms of wage discrimination have been removed, and of the limited impact of most policy initiatives. From another, it may be seen as evidence that dire predictions about the effects of decentralisation on the earnings gap have failed to materialise. In this paper, I use Australian Bureau of Statistics data to show that a number of different trends are evident underneath the relatively static picture shown by the aggregate statistics, particularly as wage dispersion has increased. The data suggest not only that the prospects for pay equity are far from benign, but also that in the current labour market the issue of gender pay inequality cannot be effectively addressed separately from wage inequality more generally.
Resumo:
Binning and truncation of data are common in data analysis and machine learning. This paper addresses the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by McLachlan and Jones (Biometrics, 44: 2, 571-578, 1988) for the univariate case is generalized to multivariate measurements. The multivariate solution requires the evaluation of multidimensional integrals over each bin at each iteration of the EM procedure. Naive implementation of the procedure can lead to computationally inefficient results. To reduce the computational cost a number of straightforward numerical techniques are proposed. Results on simulated data indicate that the proposed methods can achieve significant computational gains with no loss in the accuracy of the final parameter estimates. Furthermore, experimental results suggest that with a sufficient number of bins and data points it is possible to estimate the true underlying density almost as well as if the data were not binned. The paper concludes with a brief description of an application of this approach to diagnosis of iron deficiency anemia, in the context of binned and truncated bivariate measurements of volume and hemoglobin concentration from an individual's red blood cells.
Resumo:
Motivation: This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. Results: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets.