837 resultados para clustering users in social network
Resumo:
The focus of this paper is the assessment of groups of agents or units in a network organization. Given a social network, the relations between agents are modeled by means of a graph, and its functionality will be codified by means of a cooperative game. Building on previous work of Gomez et al. (2003) for the individual case, we propose a Myerson group value to evaluate the ability of each group of agents inside the social network to achieve the organization's goals. We analyze this centrality measure, and in particular we offer several decompositions that facilitate obtaining a precise interpretation of it.
Resumo:
Non-traditional means of recruitment for the twenty-first century knowledge worker need to accompany traditional means of recruitment due to an increased usage of technology by the twenty-first century knowledge worker. In this capstone project, the author examined the recruiting efficacy of social networks. Non-traditional means of recruitment through social networks via the World Wide Web can help organizations compete for potential applicants and assist job seekers in securing employment. These means are cost effective for the employer. Examples of organizational usage in this investigation illustrate that social networking can improve efficacy for recruitment and generational needs.
Resumo:
By switching the level of analysis and aggregating data from the micro-level of individual cases to the macro-level, quantitative data can be analysed within a more case-based approach. This paper presents such an approach in two steps: In a first step, it discusses the combination of Social Network Analysis (SNA) and Qualitative Comparative Analysis (QCA) in a sequential mixed-methods research design. In such a design, quantitative social network data on individual cases and their relations at the micro-level are used to describe the structure of the network that these cases constitute at the macro-level. Different network structures can then be compared by QCA. This strategy allows adding an element of potential causal explanation to SNA, while SNA-indicators allow for a systematic description of the cases to be compared by QCA. Because mixing methods can be a promising, but also a risky endeavour, the methodological part also discusses the possibility that underlying assumptions of both methods could clash. In a second step, the research design presented beforehand is applied to an empirical study of policy network structures in Swiss politics. Through a comparison of 11 policy networks, causal paths that lead to a conflictual or consensual policy network structure are identified and discussed. The analysis reveals that different theoretical factors matter and that multiple conjunctural causation is at work. Based on both the methodological discussion and the empirical application, it appears that a combination of SNA and QCA can represent a helpful methodological design for social science research and a possibility of using quantitative data with a more case-based approach.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Network building and exchange of information by people within networks is crucial to the innovation process. Contrary to older models, in social networks the flow of information is noncontinuous and nonlinear. There are critical barriers to information flow that operate in a problematic manner. New models and new analytic tools are needed for these systems. This paper introduces the concept of virtual circuits and draws on recent concepts of network modelling and design to introduce a probabilistic switch theory that can be described using matrices. It can be used to model multistep information flow between people within organisational networks, to provide formal definitions of efficient and balanced networks and to describe distortion of information as it passes along human communication channels. The concept of multi-dimensional information space arises naturally from the use of matrices. The theory and the use of serial diagonal matrices have applications to organisational design and to the modelling of other systems. It is hypothesised that opinion leaders or creative individuals are more likely to emerge at information-rich nodes in networks. A mathematical definition of such nodes is developed and it does not invariably correspond with centrality as defined by early work on networks.
Resumo:
Word of mouth (WOM) communication is a major part of online consumer interactions, particularly within the environment of online communities. Nevertheless, existing (offline) theory may be inappropriate to describe online WOM and its influence on evaluation and purchase.The authors report the results of a two-stage study aimed at investigating online WOM: a set of in-depth qualitative interviews followed by a social network analysis of a single online community. Combined, the results provide strong evidence that individuals behave as if Web sites themselves are primary "actors" in online social networks and that online communities can act as a social proxy for individual identification. The authors offer a conceptualization of online social networks which takes the Web site into account as an actor, an initial exploration of the concept of a consumer-Web site relationship, and a conceptual model of the online interaction and information evaluation process. © 2007 Wiley Periodicals, Inc. and Direct Marketing Educational Foundation, Inc.
Resumo:
The proliferation of visual display terminals (VDTs) in offices is an international phenomenon. Numerous studies have investigated the health implications which can be categorised into visual problems, symptoms of musculo-skelctal discomfort, or psychosocial effects. The psychosocial effects are broader and there is mixed evidence in this area. The inconsistent results from the studies of VDT work so far undertaken may reflect several methodological shortcomings. In an attempt to overcome these deficiencies and to broaden the model of inter-relationships a model was developed to investigate their interactions and Ihc outputs of job satisfaction, stress and ill health. The study was a two-stage, long-term investigation with measures taken before the VDTs were introduced and the same measures taken 12 months after the 'go-live' date. The research was conducted in four offices of the Department of Social Security. The data were analysed for each individual site and in addition the total data were used in a path analysis model. Significant positive relationships were found at the pre-implementation stage between the musculo-skeletal discomfort, psychosomatic ailments, visual complaints and stress. Job satisfaction was negatively related to visual complaints and musculo-skeletal discomfort. Direct paths were found for age and job level with variety found in the job and age with job satisfaction and a negative relationship with the office environment. The only job characteristic which had a direct path to stress was 'dealing with others'. Similar inter-relationships were found in the post-implementation data. However, in addition attributes of the computer system, such as screen brightness and glare, were related positively with stress and negatively with job satisfaction. The comparison of the data at the two stages found that there had been no significant changes in the users' perceptions of their job characteristics and job satisfaction but there was a small and significant reduction in the stress measure.
Resumo:
Sales leadership research has typically taken a leader-focused approach, investigating key questions from a top-down perspective. Yet considerable research outside sales has advocated a view of leadership that takes into account the fact that employees look beyond a single designated individual for leadership. In particular, the social networks of leaders have been a popular topic of investigation in the management literature, although coverage in the sales literature remains rare. The present paper conceptualizes the sales leadership role as one in which the leader must manage a network of simultaneous relationships; several types of sales manager relationships, such as the sales-manager-to-top-manager and the sales-manager-to-sales manager relationships, have received limited attention in the sales literature to date. Taking an approach based on social network theory, we develop a conceptualization of the sales manager as a "network engineer," who must manage multiple relationships, and the flows between them. Drawing from this model, we propose a detailed agenda for future sales research. © 2012 PSE National Educational Foundation. All rights reserved.
Resumo:
This paper analyzes the theme of knowledge transfer in supply chain management. The aim of this study is to present the social network analysis (SNA) as an useful tool to study knowledge networks within supply chain, to monitor knowledge flows and to identify the accumulating knowledge nodes of the networks.
Resumo:
Social Media is becoming an increasingly important part of people’s lives and is being used increasingly in the food and agriculture sector. This paper considers the extent to which each section of the food supply chain is represented in Twitter and use the hashtag #food. We looked at the 20 most popular words for each part of the supply chain by categorising 5000 randomly selected tweets to different sections of the food chain and then analysing each category. We sorted the users by those who tweeted most frequently and categorised their position in the food supply chain. Finally to consider the indegree of influence, we took the top 100 tweeters from the previous list and consider what following these users have. From this we found that consumers are the most represented area of the food chain, and logistics is the least represented. Consumers had 51.50% of the users and 87.42% of the top words tweeted from that part of the food chain. We found little evidence of logistics representation for either tweets or users (0.84% and 0.35% respectively). The top users were found to follow a high percentage of their own followers with most having over 70% the same. This research will bring greater understanding of how people perceive the food sector and how Twitter can be used within this sector.
Resumo:
We introduce ReDites, a system for realtime event detection, tracking, monitoring and visualisation. It is designed to assist Information Analysts in understanding and exploring complex events as they unfold in the world. Events are automatically detected from the Twitter stream. Then those that are categorised as being security-relevant are tracked, geolocated, summarised and visualised for the end-user. Furthermore, the system tracks changes in emotions over events, signalling possible flashpoints or abatement. We demonstrate the capabilities of ReDites using an extended use case from the September 2013 Westgate shooting incident. Through an evaluation of system latencies, we also show that enriched events are made available for users to explore within seconds of that event occurring.
Resumo:
This paper presents an analysis of whether a consumer's decision to switch from one mobile phone provider to another is driven by individual consumer characteristics or by actions of other consumers in her social network. Such consumption interdependences are estimated using a unique dataset, which contains transaction data based on anonymized call records from a large European mobile phone carrier to approximate a consumer's social network. Results show that network effects have an important impact on consumers' switching decisions: switching decisions are interdependent between consumers who interact with each other and this interdependence increases in the closeness between two consumers as measured by the calling data. In other words, if a subscriber switches carriers, she is also affecting the switching probabilities of other individuals in her social circle. The paper argues that such an approach is of high relevance to both switching of providers and to the adoption of new products. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
This paper researches on Matthew Effect in Sina Weibo microblogger. We choose the microblogs in the ranking list of Hot Microblog App in Sina Weibo microblogger as target of our study. The differences of repost number of microblogs in the ranking list between before and after the time when it enter the ranking list of Hot Microblog app are analyzed. And we compare the spread features of the microblogs in the ranking list with those hot microblogs not in the list and those ordinary microblogs of users who have some microblog in the ranking list before. Our study proves the existence of Matthew Effect in social network. © 2013 IEEE.
Resumo:
Uncertainty text detection is important to many social-media-based applications since more and more users utilize social media platforms (e.g., Twitter, Facebook, etc.) as information source to produce or derive interpretations based on them. However, existing uncertainty cues are ineffective in social media context because of its specific characteristics. In this paper, we propose a variant of annotation scheme for uncertainty identification and construct the first uncertainty corpus based on tweets. We then conduct experiments on the generated tweets corpus to study the effectiveness of different types of features for uncertainty text identification. © 2013 Association for Computational Linguistics.
Resumo:
In many e-commerce Web sites, product recommendation is essential to improve user experience and boost sales. Most existing product recommender systems rely on historical transaction records or Web-site-browsing history of consumers in order to accurately predict online users’ preferences for product recommendation. As such, they are constrained by limited information available on specific e-commerce Web sites. With the prolific use of social media platforms, it now becomes possible to extract product demographics from online product reviews and social networks built from microblogs. Moreover, users’ public profiles available on social media often reveal their demographic attributes such as age, gender, and education. In this paper, we propose to leverage the demographic information of both products and users extracted from social media for product recommendation. In specific, we frame recommendation as a learning to rank problem which takes as input the features derived from both product and user demographics. An ensemble method based on the gradient-boosting regression trees is extended to make it suitable for our recommendation task. We have conducted extensive experiments to obtain both quantitative and qualitative evaluation results. Moreover, we have also conducted a user study to gauge the performance of our proposed recommender system in a real-world deployment. All the results show that our system is more effective in generating recommendation results better matching users’ preferences than the competitive baselines.