991 resultados para cloud-point extraction
Resumo:
3D crop reconstruction with a high temporal resolution and by the use of non-destructive measuring technologies can support the automation of plant phenotyping processes. Thereby, the availability of such 3D data can give valuable information about the plant development and the interaction of the plant genotype with the environment. This article presents a new methodology for georeferenced 3D reconstruction of maize plant structure. For this purpose a total station, an IMU, and several 2D LiDARs with different orientations were mounted on an autonomous vehicle. By the multistep methodology presented, based on the application of the ICP algorithm for point cloud fusion, it was possible to perform the georeferenced point clouds overlapping. The overlapping point cloud algorithm showed that the aerial points (corresponding mainly to plant parts) were reduced to 1.5%–9% of the total registered data. The remaining were redundant or ground points. Through the inclusion of different LiDAR point of views of the scene, a more realistic representation of the surrounding is obtained by the incorporation of new useful information but also of noise. The use of georeferenced 3D maize plant reconstruction at different growth stages, combined with the total station accuracy could be highly useful when performing precision agriculture at the crop plant level.
Resumo:
This paper deals with the stabilisation of low softening point pitch fibres obtained from petroleum pitches using HNO3 as oxidising agent. This method presents some advantages compared with conventional methods: pitches with low softening point (SP) can be used to prepare carbon fibres (CF), the stabilisation time has been reduced, the CF yields are similar to those obtained after general methods of stabilisation, and the initial treatments to increase SP when low SP pitches are used to prepare CF, are avoided. The parent pitches were characterised by different techniques such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), elemental analysis and solvent extraction with toluene and quinoline. The interaction between HNO3 and the pitch fibres, as well as the changes occurring during the heat treatment, have been followed by DRIFTS.
Resumo:
Cloud Agile Manufacturing is a new paradigm proposed in this article. The main objective of Cloud Agile Manufacturing is to offer industrial production systems as a service. Thus users can access any functionality available in the cloud of manufacturing (process design, production, management, business integration, factories virtualization, etc.) without knowledge — or at least without having to be experts — in managing the required resources. The proposal takes advantage of many of the benefits that can offer technologies and models like: Business Process Management (BPM), Cloud Computing, Service Oriented Architectures (SOA) and Ontologies. To develop the proposal has been taken as a starting point the Semantic Industrial Machinery as a Service (SIMaaS) proposed in previous work. This proposal facilitates the effective integration of industrial machinery in a computing environment, offering it as a network service. The work also includes an analysis of the benefits and disadvantages of the proposal.
Resumo:
This paper proposes a new manufacturing paradigm, we call Cloud Agile Manufacturing, and whose principal objective is to offer industrial production systems as a service. Thus users can access any functionality available in the cloud of manufacturing (process design, production, management, business integration, factories virtualization, etc.) without knowledge — or at least without having to be experts — in managing the required resources. The proposal takes advantage of many of the benefits that can offer technologies and models like: Business Process Management (BPM), Cloud Computing, Service Oriented Architectures (SOA) and Ontologies. To develop the proposal has been taken as a starting point the Semantic Industrial Machinery as a Service (SIMaaS) proposed in previous work. This proposal facilitates the effective integration of industrial machinery in a computing environment, offering it as a network service. The work also includes an analysis of the benefits and disadvantages of the proposal.
Resumo:
Rock mass characterization requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in Light Detection and Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data acquisition, yielding on the development of new methodologies for the automatic characterization of rock mass discontinuities. This paper presents a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. This method identifies and defines the algebraic equations of the different planes of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test, finding principal orientations by Kernel Density Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise. Different sources of information —synthetic and 3D scanned data— were employed, performing a complete sensitivity analysis of the parameters in order to identify the optimal value of the variables of the proposed method. In addition, raw source files and obtained results are freely provided in order to allow to a more straightforward method comparison aiming to a more reproducible research.
Resumo:
3D sensors provides valuable information for mobile robotic tasks like scene classification or object recognition, but these sensors often produce noisy data that makes impossible applying classical keypoint detection and feature extraction techniques. Therefore, noise removal and downsampling have become essential steps in 3D data processing. In this work, we propose the use of a 3D filtering and down-sampling technique based on a Growing Neural Gas (GNG) network. GNG method is able to deal with outliers presents in the input data. These features allows to represent 3D spaces, obtaining an induced Delaunay Triangulation of the input space. Experiments show how the state-of-the-art keypoint detectors improve their performance using GNG output representation as input data. Descriptors extracted on improved keypoints perform better matching in robotics applications as 3D scene registration.
Resumo:
These days as we are facing extremely powerful attacks on servers over the Internet (say, by the Advanced Persistent Threat attackers or by Surveillance by powerful adversary), Shamir has claimed that “Cryptography is Ineffective”and some understood it as “Cryptography is Dead!” In this talk I will discuss the implications on cryptographic systems design while facing such strong adversaries. Is crypto dead or we need to design it better, taking into account, mathematical constraints, but also systems vulnerability constraints. Can crypto be effective at all when your computer or your cloud is penetrated? What is lost and what can be saved? These are very basic issues at this point of time, when we are facing potential loss of privacy and security.
Resumo:
The complete characterization of rock masses implies the acquisition of information of both, the materials which compose the rock mass and the discontinuities which divide the outcrop. Recent advances in the use of remote sensing techniques – such as Light Detection and Ranging (LiDAR) – allow the accurate and dense acquisition of 3D information that can be used for the characterization of discontinuities. This work presents a novel methodology which allows the calculation of the normal spacing of persistent and non-persistent discontinuity sets using 3D point cloud datasets considering the three dimensional relationships between clusters. This approach requires that the 3D dataset has been previously classified. This implies that discontinuity sets are previously extracted, every single point is labeled with its corresponding discontinuity set and every exposed planar surface is analytically calculated. Then, for each discontinuity set the method calculates the normal spacing between an exposed plane and its nearest one considering 3D space relationship. This link between planes is obtained calculating for every point its nearest point member of the same discontinuity set, which provides its nearest plane. This allows calculating the normal spacing for every plane. Finally, the normal spacing is calculated as the mean value of all the normal spacings for each discontinuity set. The methodology is validated through three cases of study using synthetic data and 3D laser scanning datasets. The first case illustrates the fundamentals and the performance of the proposed methodology. The second and the third cases of study correspond to two rock slopes for which datasets were acquired using a 3D laser scanner. The second case study has shown that results obtained from the traditional and the proposed approaches are reasonably similar. Nevertheless, a discrepancy between both approaches has been found when the exposed planes members of a discontinuity set were hard to identify and when the planes pairing was difficult to establish during the fieldwork campaign. The third case study also has evidenced that when the number of identified exposed planes is high, the calculated normal spacing using the proposed approach is minor than those using the traditional approach.
Resumo:
Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.
Resumo:
.bin files should be opened using CloudCompare
Resumo:
Rock mass classification systems are widely used tools for assessing the stability of rock slopes. Their calculation requires the prior quantification of several parameters during conventional fieldwork campaigns, such as the orientation of the discontinuity sets, the main properties of the existing discontinuities and the geo-mechanical characterization of the intact rock mass, which can be time-consuming and an often risky task. Conversely, the use of relatively new remote sensing data for modelling the rock mass surface by means of 3D point clouds is changing the current investigation strategies in different rock slope engineering applications. In this paper, the main practical issues affecting the application of Slope Mass Rating (SMR) for the characterization of rock slopes from 3D point clouds are reviewed, using three case studies from an end-user point of view. To this end, the SMR adjustment factors, which were calculated from different sources of information and processes, using the different softwares, are compared with those calculated using conventional fieldwork data. In the presented analysis, special attention is paid to the differences between the SMR indexes derived from the 3D point cloud and conventional field work approaches, the main factors that determine the quality of the data and some recognized practical issues. Finally, the reliability of Slope Mass Rating for the characterization of rocky slopes is highlighted.
Resumo:
The world's largest fossil oyster reef, formed by the giant oyster Crassostrea gryphoides and located in Stetten (north of Vienna, Austria) is studied by Harzhauser et al., 2015, 2016; Djuricic et al., 2016. Digital documentation of the unique geological site is provided by terrestrial laser scanning (TLS) at the millimeter scale. Obtaining meaningful results is not merely a matter of data acquisition with a suitable device; it requires proper planning, data management, and postprocessing. Terrestrial laser scanning technology has a high potential for providing precise 3D mapping that serves as the basis for automatic object detection in different scenarios; however, it faces challenges in the presence of large amounts of data and the irregular geometry of an oyster reef. We provide a detailed description of the techniques and strategy used for data collection and processing in Djuricic et al., 2016. The use of laser scanning provided the ability to measure surface points of 46,840 (estimated) shells. They are up to 60-cm-long oyster specimens, and their surfaces are modeled with a high accuracy of 1 mm. In addition to laser scanning measurements, more than 300 photographs were captured, and an orthophoto mosaic was generated with a ground sampling distance (GSD) of 0.5 mm. This high-resolution 3D information and the photographic texture serve as the basis for ongoing and future geological and paleontological analyses. Moreover, they provide unprecedented documentation for conservation issues at a unique natural heritage site.
Resumo:
A valuable alternative to US cardiotocography, for fetal surveillance, can be offered by phonocardiography, a passive and low cost acoustic recording of fetal heart sounds. A crucial point is the exact recognizing of the fetal heart sounds, associated to each fetal heart beat, and then the estimation of FHR signal. In this work, software for FHR assessment from phonocardiographic signals was developed. To check the reliability of the software, obtained results were compared with those of simultaneously recorded cardiotocographic signals. Results seemed to be satisfying, as provided FHR series were almost all confined within FHR-CTG +/- 3 bpm, where FHR-CTG were FHR series provided by commercial US cardiotocographic devices, currently employed in clinical routine.
Resumo:
This paper presents the main concepts of a project under development concerning the analysis process of a scene containing a large number of objects, represented as unstructured point clouds. To achieve what we called the "optimal scene interpretation" (the shortest scene description satisfying the MDL principle) we follow an approach for managing 3-D objects based on a semantic framework based on ontologies for adding and sharing conceptual knowledge about spatial objects.
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.