948 resultados para clot activator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence demonstrates that the thrombin receptor (protease activated receptor-1, PAR-1) plays a major role in tumor invasion and contributes to the metastatic phenotype of human melanoma. We demonstrate that the metastatic potential of human melanoma cells correlates with overexpression of PAR-1. The promoter of the PAR-1 gene contains multiple putative AP-2 and Sp1 consensus elements. We provide evidence that an inverse correlation exists between the expression of AP-2 and the expression of PAR-1 in human melanoma cells. Re-expression of AP-2 in WM266-4 melanoma cells (AP-2 negative) resulted in decreased mRNA and protein expression of PAR-1 and significantly reduced the tumor potential in nude mice. ChIP analysis of the PAR-1 promoter regions bp −365 to −329 (complex 1) and bp −206 to −180 (complex 2) demonstrates that in metastatic cells Sp1 is predominantly binding to the PAR-1 promoter, while in nonmetastatic cells AP-2 is bound. In vitro analysis of complex 1 demonstrates that AP-2 and Sp1 bind to this region in a mutually exclusive manner. Transfection experiments with full-length and progressive deletions of the PAR-1 promoter luciferase constructs demonstrated that metastatic cells had increased promoter activity compared to low and nonmetastatic melanoma cells. Our data shows that exogenous AP-2 expression decreased promoter activity, while transient expression of Sp1 further activated expression of the reporter gene. Mutational analysis of complex 1 within PAR-1 luciferase constructs further demonstrates that the regulation of PAR-1 is mediated through interactions with AP-2 and Sp1. Moreover, loss of AP-2 in metastatic cells alters the AP-2 to Sp1 ratio and DNA-binding activity resulting in overexpression of PAR-1. In addition, we evaluated the expression of AP-2 and PAR-1 utilizing a tissue microarray of 93 melanocytic lesions spanning from benign nevi to melanoma metastasis. We report loss of AP-2 expression in malignant tumors compared to benign tissue while PAR-1 was expressed more often in metastatic melanoma cells than in benign melanocytes. We propose that loss of AP-2 results in increased expression of PAR-1, which in turn results in upregulation of gene products that contribute to the metastatic phenotype of melanoma. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hematopoietic growth factors play important roles in regulating blood cell growth and development in vivo. In this work, we investigated the signaling mechanisms of two growth factors with clinical significance, erythropoietin (Epo) and granulocyte colony-stimulating factor (G-CSF). Epo is essential for the survival, proliferation and differentiation of red blood cell progenitors, while G-CSF plays an important role in controlling mature neutrophil production. To identify which amino acid(s) and/or motif in EpoR is responsible for cell survival, wild type or mutant EpoR isoforms were transfected into the growth factor-dependent 32D cell line. Proliferation and apoptosis assays demonstrated that an EpoR isoform that lacks intracellular tyrosine residues and is truncated after 321 amino acids in the cytoplasmic tail (EpoR 1-321) mediates Epo-dependent cell survival. Furthermore, in absence of fetal calf serum (FCS), Epo signaling through wild type or mutant receptors supported anti-apoptosis, but not proliferation during 72 hours in response to Epo. To investigate the signaling pathway by which EpoR regulates cell survival, a dominant negative Stat5b (dnStat5b) isoform was generated and coexpressed with EpoR in stable cell lines. Expression of dnStat5b causes a significant induction of apoptosis in the presence of Epo in cells expressing EpoR 1-321, indicating that Stat5 is essential for survival signaling through tyrosine independent sequences in the EpoR. In a second project to investigate G-CSF signaling, we studied mechanisms by which G-CSF regulates the expression of PU.1, an important transcription factor in myeloid and B cell development. We demonstrated, by immunoblot and real time RT-PCR, that PU.1 is induced by G-CSF ex vivo as well as in vivo. To test whether G-CSF signaling through Stat3 is required for PU.1 regulation, the upstream region of the PU.1 gene was analyzed for potential Stat3 binding motifs. Four potential sites were identified; chromatin immunoprecipitations demonstrated that G-CSF activated Stat3 binds to 3 of the 4 binding motifs. In addition, PU.1 induction by G-CSF was completely abrogated in bone marrow from hematopoietic conditional Stat3 knockout mice. These results indicate an important role for Stat3 in G-CSF-dependent PU.1 gene regulation. Collectively, our works demonstrate that Stat protein play important and diverse roles in hematopoietic growth factor signaling. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transducer and activator of transcription 3 (Stat3) is a signaling molecule that transduces signal from cell surface receptors, itself translocates into the nucleus, binds to consensus promoter sequences and activates gene transcription. Here, we showed that Stat3 is constitutively activated in both premalignant tumors (papillomas) and squamous cell carcinomas of mouse skin that is induced by topical treatment with an initiator 7,12-dimethylbenz[a]anthracene (DMBA) followed by a tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Additional data demonstrated that epidermal growth factor signaling contributes to the activation of Stat3 in this model. Using mice where Stat3 function is abrogated in keratinocytes via the Cre-LoxP system (K5Cre.Stat3 flox/flox), we demonstrated that Stat3 is required for de novo carcinogenesis since Stat3 deficiency leads to a complete abrogation of skin tumor development induced by DMBA and TPA. We subsequently showed that Stat3 plays a role in both the initiation and promotion stages of carcinogenesis. During initiation, Stat3 functions as an anti-apoptotic molecule for maintaining the survival of DNA-damaged keratinocyte stem cells. During promotion, Stat3 functions as a critical regulator for G1 to S phase cell cycle progression to confer selective clonal expansion of initiated cells into papillomas. On the other hand, using transgenic mice over-expressing a constitutively dimerized form of Stat3 (Stat3C) in keratinocytes (K5.Stat3C), we revealed a role for Stat3 in tumor progression. After treatment with DMBA and TPA, K5.Stat3C transgenic mice developed skin tumors with a shorter latency when 100% bypassed the premalignant stage and became carcinoma in situ. Histological and immunohistochemical analysis revealed these tumors as highly vascularized and poorly differentiated. More strikingly, these tumors exhibited invasion into surrounding mesenchymal tissue, some of which metastasized into lung. The tumor-mesenchymal front was characterized by partial loss of E-cadherin and elevation of vimentin, markers characterizing epithelial-mesenchymal transition. On the other hand, inhibition of Stat3 via a decoy oligonucleotide led to a significant reduction of tumor size in approximately 50% of all papillomas tested. In conclusion, we demonstrated that Stat3 plays a critical in all three stages (initiation, promotion and progression) of skin carcinogenesis, and it may potentially become a good target for cancer prevention and anti-cancer therapy. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The JAK-STAT pathway is a major signaling pathway involved in many biological processes including proliferation, apoptosis, and differentiation. Aberrant expression of STATs has been reported in multiple human cancers and murine mouse models of tumorigenesis. Previous studies from our lab and others have established a critical role for Stat3 in epithelial tumorigenesis, but the role of Stat1 is largely unknown. The current study was designed to explore the role of Stat1 during multistage skin carcinogenesis. Topical treatment with both TPA and the anthrone derivative chrysarobin (CHRY) led to rapid phosphorylation of Stat1 on both tyrosine (Tyr701) and serine (Ser727) residues in epidermis. CHRY treatment also led to upregulation of unphosphorylated Stat1 (uStat1) at later time points. In addition, CHRY treatment also led to upregulation of IRF-1 mRNA and protein which was dependent on Stat1. Further analyses demonstrated that topical treatment with CHRY but not TPA upregulated interferon-gamma (IFNg) mRNA in the epidermis and that the induction of both IRF-1 and uStat1 was dependent on IFNg signaling. Stat1 deficient (Stat1-/-) mice were highly resistant to skin tumor promotion by CHRY. In contrast, the tumor response (in terms of both papillomas and squamous cell carcinomas) was similar in Stat1-/- mice and wild-type littermates with TPA as the promoter. Histological evaluation of the proliferative response confirmed the data obtained from the tumor study for both TPA and CHRY. In addition, maximal induction of both cyclooxygenase-2 and inducible nitric oxide synthase in epidermis following treatment with CHRY was also dependent on the presence of functional Stat1. Following CHRY treatment, Stat1-/- mice exhibited reduced macrophage infiltration and reduced production of many immune cell derived chemokines/cytokines. These studies define a novel mechanism associated with skin tumor promotion by the anthrone class of tumor promoters involving upregulation of IFNg signaling in the epidermis and downstream signaling through activated (phosphorylated) Stat1 and subsequent upregulation of IRF-1 and uStat1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell activation and expansion is essential for immune response against foreign antigens. However, uncontrolled T cell activity can be manifested as a number of lymphoid derived diseases such as autoimmunity, graft versus host disease, and lymphoma. The purpose of this research was to test the central hypothesis that the Jak3/Stat5 pathway is critical for T cell function. To accomplish this objective, two novel Jak3 inhibitors, AG490 and PNU156804, were identified and their effects characterized on Jak3/Stat5 activation and T cell growth. Inhibition of Jak3 selectively disrupted primary human T lymphocyte growth in response to Interleukin-2 (IL-2), as well as other γ c cytokine family members including IL-4, IL-7, IL-9, and IL-15. Inhibition of Jak3 ablated IL-2 induced Stat5 but not TNF-α mediated NF-κβ DNA binding. Loss of Jak3 activity did not affect T cell receptor mediated signals including activation of p56Lck and Zap70, or IL-2 receptor a chain expression. To examine the effects of Jak3/Stat5 inhibition within a mature immune system, we employed a rat heart allograft model of Lewis (RT1 1) to ACI (RT1a). Heart allograft survival was significantly prolonged following Jak3/Stat5 inhibition when rats were treated with AG490 (20mg/kg) or PNU156804 (80mg/kg) compared to non-treated control animals. This effect was synergistically potentiated when Jak3 inhibitors were used in combination with a signal 1/2 disrupter, cyclosporine, but only additively potentiated with another signal 3 inhibitor, rapamycin. This suggested that sequential inhibition of T cell function is more effective. To specifically address the role of Stat5 in maintaining T cell activity, novel Stat5 antisense oligonucleotides were synthesized and characterized in vitro. Primary human T cells and T-cell tumor lines treated with Stat5 antisense oligonucleotide (7.5 μM) rapidly underwent apoptosis, while no changes in cell cycle were observed as measured by FACS analysis utilizing Annexin-V-Fluorescein and Propidium iodide staining. Evidence is provided to suggest that caspase 8 and 9 pathways mediate this event. Thus, Stat5 may act rather as a negative regulator of apoptotic signals and not as a positive regulator of cell cycle as previously proposed. We conclude that the Jak3/Stat5 pathway is critical for γc cytokine mediated gene expression necessary for T cell expansion and normal immune function and represents an therapeutically relevant effector pathway to combat T cell derived disease. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present evidence that Escherichia coli RNA polymerase β subunit may be a transcriptional activator contact site. Stimulation of the activity of the pR promoter by DnaA protein is necessary for replication of plasmids derived from bacteriophage λ. We found that DnaA activates the pR promoter in vitro. Particular mutations in the rpoB gene were able to suppress negative effects that certain dnaA mutations had on the replication of λ plasmids; this suppression was allele-specific. When a potential DnaA-binding sequence located several base pairs downstream of the pR promoter was scrambled by in vitro mutagenesis, the pR promoter was no longer activated by DnaA both in vivo and in vitro. Therefore, we conclude that DnaA may contact the β subunit of RNA polymerase during activation of the pR promoter. A new classification of prokaryotic transcriptional activators is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence analysis of a heat-stable protein necessary for the activation of ADP ribosylation factor-dependent phospholipase D (PLD) reveals that this protein has a structure highly homologous to the previously known GM2 ganglioside activator whose deficiency results in the AB-variant of GM2 gangliosidosis. The heat-stable activator protein indeed has the capacity to enhance enzymatic conversion of GM2 to GM3 ganglioside that is catalyzed by β-hexosaminidase A. Inversely, GM2 ganglioside activator purified separately from tissues as described earlier [Conzelmann, E. & Sandhoff, K. (1987) Methods Enzymol. 138, 792–815] stimulates ADP ribosylation factor-dependent PLD in a dose-dependent manner. At higher concentrations of ammonium sulfate, the PLD activator protein apparently substitutes for protein kinase C and phosphatidylinositol 4,5-bisphosphate, both of which are known as effective stimulators of the PLD reaction. The mechanism of action of the heat-stable PLD activator protein remains unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pairs of transcriptional activators in prokaryotes have been shown to activate transcription synergistically from promoters with two activator binding sites. In some cases, such synergistic effects result from cooperative binding, but in other cases each DNA-bound activator plays a direct role in the activation process by interacting simultaneously with separate surfaces of RNA polymerase. In such cases, each DNA-bound activator must possess a functional activating region, the surface that mediates the interaction with RNA polymerase. When transcriptional activation depends on two or more identical activators, it is not straightforward to test the requirement of each activator for a functional activating region. Here we describe a method for directing a mutationally altered activator to either one or the other binding site, and we demonstrate the use of this method to examine the mechanism of transcriptional activator synergy by the Escherichia coli cyclic AMP receptor protein (CRP) working at an artificial promoter bearing two CRP-binding sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal plasticity plays a very important role in brain adaptations to environmental stimuli, disease, and aging processes. The kainic acid model of temporal lobe epilepsy was used to study the long-term anatomical and biochemical changes in the hippocampus after seizures. Using Northern blot analysis, immunocytochemistry, and Western blot analysis, we have found a long-term elevation of the proconvulsive opioid peptide, enkephalin, in the rat hippocampus. We have also demonstrated that an activator protein-1 transcription factor, the 35-kDa fos-related antigen, can be induced and elevated for at least 1 year after kainate treatment. This study demonstrated that a single systemic injection of kainate produces almost permanent increases in the enkephalin and an activator protein-1 transcription factor, the 35-kDa fos-related antigen, in the rat hippocampus, and it is likely that these two events are closely associated with the molecular mechanisms of induction of long-lasting enhanced seizure susceptibility in the kainate-induced seizure model. The long-term expression of the proenkephalin mRNA and its peptides in the kainate-treated rat hippocampus also suggests an important role in the recurrent seizures of temporal lobe epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar UV irradiation is the causal factor for the increasing incidence of human skin carcinomas. The activation of the transcription factor activator protein-1 (AP-1) has been shown to be responsible for the tumor promoter action of UV light in mammalian cells. We demonstrate that proteinase inhibitor I (Inh I) and II (Inh II) from potato tubers, when applied to mouse epidermal JB6 cells, block UV-induced AP-1 activation. The inhibition appears to be specific for UV-induced signal transduction for AP-1 activation, because these inhibitors did not block UV-induced p53 activation nor did they exhibit any significant influence on epidermal growth factor-induced AP-1 transactivation. Furthermore, the inhibition of UV-induced AP-1 activity occurs through a pathway that is independent of extracellular signal-regulated kinases and c-Jun N-terminal kinases as well as P38 kinases. Considering the important role of AP-1 in tumor promotion, it is possible that blocking UV-induced AP-1 activity by Inh I or Inh II may be functionally linked to irradiation-induced cell transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is activated by phosphorylation on Thr and Tyr. Here we report the molecular cloning of a new member of the mammalian MAP kinase kinase group (MKK7) that functions as an activator of JNK. In vitro protein kinase assays demonstrate that MKK7 phosphorylates and activates JNK, but not the p38 or extracellular signal-regulated kinase groups of MAP kinase. Expression of MKK7 in cultured cells causes activation of the JNK signal transduction pathway. MKK7 is therefore established to be a novel component of the JNK signal transduction pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prolamin box (P-box) is a highly conserved 7-bp sequence element (5′-TGTAAAG-3′) found in the promoters of many cereal seed storage protein genes. Nuclear factors from maize endosperm specifically interact with the P-box present in maize prolamin genes (zeins). The presence of the P-box in all zein gene promoters suggests that interactions between endosperm DNA binding proteins and the P-box may play an important role in the coordinate activation of zein gene expression during endosperm development. We have cloned an endosperm-specific maize cDNA, named prolamin-box binding factor (PBF), that encodes a member of the recently described Dof class of plant Cys2-Cys2 zinc-finger DNA binding proteins. When tested in gel shift assays, PBF exhibits the same sequence-specific binding to the P-box as factors present in maize endosperm nuclei. Additionally, PBF interacts in vitro with the basic leucine zipper protein Opaque2, a known transcriptional activator of zein gene expression whose target site lies 20 bp downstream of the P-box in the 22-kDa zein gene promoter. The isolation of the PBF gene provides an essential tool to further investigate the functional role of the highly conserved P-box in regulating cereal storage protein gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) regulates a broad range of biological processes, including cell growth, development, differentiation, and immunity. TGF-β signals through its cell surface receptor serine kinases that phosphorylate Smad2 or Smad3 proteins. Because Smad3 and its partner Smad4 bind to only 4-bp Smad binding elements (SBEs) in DNA, a central question is how specificity of TGF-β-induced transcription is achieved. We show that Smad3 selectively binds to two of the three SBEs in PE2.1, a TGF-β-inducible fragment of the plasminogen activator inhibitor-1 promoter, to mediate TGF-β-induced transcription; moreover, a precise 3-bp spacer between one SBE and the E-box, a binding site for transcription factor μE3 (TFE3), is essential for TGF-β-induced transcription. Whereas an isolated Smad3 MH1 domain binds to TFE3, TGF-β receptor-mediated phosphorylation of full-length Smad3 enhances its binding to TFE3. Together, these studies elucidate an important mechanism for specificity in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the effect of two rhesus papillomavirus 1 (RhPV) oncogenes on cytokine-induced signal transduction pathways leading to the possible activation of Ras protein (p21ras) and phosphatidylinositol kinase. p21ras in both the activated (GTP-bound) and inactivated (GDP-bound) states were quantitated. NIH 3T3 cell lines expressing the RhPV 1 E5 gene or epidermal growth factor receptor cDNA had about a sixfold higher ratio of p21ras-bound GTP to p21ras-bound GDP as compared with parental NIH 3T3 cells or a cell line expressing the RhPV 1 E7 gene under normal culture conditions, yet expressed similar levels of p21ras. Quiescent cells had dramatically reduced levels of activated p21ras, except those containing RhPV 1 E7. Levels were restored by stimulation with epidermal growth factor or platelet-derived growth factor. Both epidermal growth factor and platelet-derived growth factor receptor of RhPV 1 E5- and E7-containing cells responded to cytokine stimulation. Endogenous phosphatidylinositol-3′-kinase was up-regulated in NIH 3T3 cells transformed with the E5 genes of RhPV 1 and bovine papillomavirus 1. These results suggest that E5 genes of papillomaviruses play a major role in the regulation of transduction pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibitors of DNA methyltransferase, typified by 5-aza-2′-deoxycytidine (5-Aza-CdR), induce the expression of genes transcriptionally down-regulated by de novo methylation in tumor cells. We utilized gene expression microarrays to examine the effects of 5-Aza-CdR treatment in HT29 colon adenocarcinoma cells. This analysis revealed the induction of a set of genes that implicated IFN signaling in the HT29 cellular response to 5-Aza-CdR. Subsequent investigations revealed that the induction of this gene set correlates with the induction of signal transducer and activator of transcription (STAT) 1, 2, and 3 genes and their activation by endogenous IFN-α. These observations implicate the induction of the IFN-response pathway as a major cellular response to 5-Aza-CdR and suggests that the expression of STATs 1, 2, and 3 can be regulated by DNA methylation. Consistent with STAT’s limiting cell responsiveness to IFN, we found that 5-Aza-CdR treatment sensitized HT29 cells to growth inhibition by exogenous IFN-α2a, indicating that 5-Aza-CdR should be investigated as a potentiator of IFN responsiveness in certain IFN-resistant tumors.