990 resultados para climate reconstruction
Resumo:
We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
Resumo:
Tephra layers preserved within the Greenland ice-cores are crucial for the independent synchronisation of these high-resolution records to other palaeoclimatic archives. Here we present a new and detailed tephrochronological framework for the time period 25,000 e 45,000 a b2k that brings together results from 4 deep Greenland ice-cores. In total, 99 tephra deposits, the majority of which are preserved as cryptotephra, are described from the NGRIP, NEEM, GRIP and DYE-3 records. The major element signatures of single glass shards within these deposits indicate that 93 are basaltic in composition all originating from Iceland. Specifically, 43 originate from Grimsv € otn, 20 are thought to be sourced from the Katla volcanic system and 17 show affinity to the Kverkfj € oll system. Robust geochemical characterisations, independent ages derived from the GICC05 ice-core chronology, and the stratigraphic positions of these deposits relative to the Dansgaard-Oeschger climate events represent a key framework that provides new information on the frequency and nature of volcanic events in the North Atlantic region between GS-3 and GI-12. Of particular importance are 19 tephra deposits that lie on the rapid climatic transitions that punctuate the last glacial period. This framework of well-constrained, time-synchronous tie-lines represents an important step towards the independent synchronisation of marine, terrestrial and ice-core records from the North Atlantic region, in order to assess the phasing of rapid climatic changes during the last glacial period.
Resumo:
Initializing the ocean for decadal predictability studies is a challenge, as it requires reconstructing the little observed subsurface trajectory of ocean variability. In this study we explore to what extent surface nudging using well-observed sea surface temperature (SST) can reconstruct the deeper ocean variations for the 1949–2005 period. An ensemble made with a nudged version of the IPSLCM5A model and compared to ocean reanalyses and reconstructed datasets. The SST is restored to observations using a physically-based relaxation coefficient, in contrast to earlier studies, which use a much larger value. The assessment is restricted to the regions where the ocean reanalyses agree, i.e. in the upper 500 m of the ocean, although this can be latitude and basin dependent. Significant reconstruction of the subsurface is achieved in specific regions, namely region of subduction in the subtropical Atlantic, below the thermocline in the equatorial Pacific and, in some cases, in the North Atlantic deep convection regions. Beyond the mean correlations, ocean integrals are used to explore the time evolution of the correlation over 20-year windows. Classical fixed depth heat content diagnostics do not exhibit any significant reconstruction between the different existing bservation-based references and can therefore not be used to assess global average time-varying correlations in the nudged simulations. Using the physically based average temperature above an isotherm (14°C) alleviates this issue in the tropics and subtropics and shows significant reconstruction of these quantities in the nudged simulations for several decades. This skill is attributed to the wind stress reconstruction in the tropics, as already demonstrated in a perfect model study using the same model. Thus, we also show here the robustness of this result in an historical and observational context.
Resumo:
The evolution of landscapes crucially depends on the climate history. This is particularly evident in South America where landscape responses to orbital climate shifts have been well documented. However, while most studies have focused on inferring temperature variations from paleoclimate proxy data, estimates of water budget changes have been complicated because of a lack of adequate physical information. Here, we present a methodology and related results, which allowed us to extract water discharge values from the sedimentary record of the 40 Ka-old fluvial terrace deposits in the Pisco valley, western Peru. In particular, this valley hosts a Quaternary cut-and-fill succession that we used, in combination with beryllium-10 (10Be)-based sediment flux, gauging records, channel geometries and grain size measurements, to quantitatively assess sediment and water discharge values c. 40 Ka ago in relation to present-day conditions. We compare these discharge estimates to the discharge regime of the modern Pisco River and find that the water discharge of the paleo-Pisco River, during the Minchin pluvial period c. 40 Ka ago, was c. 7–8 times greater than the modern Pisco River if considering the mean and the maximum water discharge. In addition, the calculations show that inferred water discharge estimates are mainly dependent on channel gradients and grain size values, and to a lesser extent on channel width measures. Finally, we found that the c. 40 Ka-old Minchin terrace material was poorer sorted than the modern deposits, which might reflect that sediment transport during the past period was characterized by a larger divergence from equal mobility compared to the modern situation. In summary, the differences in grain size distribution and inferred water discharge estimates between the modern and the paleo-Pisco River suggests that the 40 Ka-old Minchin period was characterized by a wetter climate and more powerful flood events.
Resumo:
A deeper understanding of past vegetation dynamics is required to better assess future vegetation responses to global warming in the Alps. Lake sediments from Lac de Bretaye, a small subalpine lake in the Northern Swiss Alps (1780 m a.s.l.), were analysed to reconstruct past vegetation dynamics for the entire Holocene, using pollen, macrofossil and charcoal analyses as main proxies. The results show that timberline reached the lake’s catchment area at around 10,300 cal. BP, supporting the hypothesis of a delayed postglacial afforestation in the Northern Alps. At the same time, thermophilous trees such as Ulmus, Tilia and Acer established in the lowlands and expanded to the altitude of the lake, forming distinctive boreo-nemoral forests with Betula, Pinus cembra and Larix decidua. From about 5000 to 3500 cal. BP, thermophilous trees declined because of increasing human land use, mainly driven by the mass expansion of Picea abies and severe anthropogenic fire activity. From the Bronze Age onwards (c. 4200–2800 cal. BP), grazing indicators and high values for charcoal concentration and influx attest an intensifying human impact, fostering the expansion of Alnus viridis and Picea abies. Hence, biodiversity in alpine meadows increased, whereas forest diversity declined, as can be seen in other regional records. We argue that the anticipated climate change and decreasing human impact in the Alps today will not only lead to an upward movement of timberline with consequent loss of area for grasslands, but also to a disruption of Picea abies forests, which may allow the re-expansion of thermophilous tree species.
Resumo:
In an attempt to document the palaeoecological affinities of individual extant and extinct dinoflagellate cysts, Late Pliocene and Early Pleistocene dinoflagellate cyst assemblages have been compared with geochemical data from the same samples. Mg/Ca ratios of Globigerina bulloides were measured to estimate the spring-summer sea-surface temperatures from four North Atlantic IODP/DSDP sites. Currently, our Pliocene-Pleistocene database contains 204 dinoflagellate cyst samples calibrated to geochemical data. This palaeo-database is compared with modern North Atlantic and global datasets. The focus lies in the quantitative relationship between Mg/Ca-based (i.e. spring-summer) sea-surface temperature (SSTMg/Ca) and dinoflagellate cyst distributions. In general, extant species are shown to have comparable spring-summer SST ranges in the past and today, demonstrating that our new approach is valid for inferring spring-summer SST ranges for extinct species. For example, Habibacysta tectata represents SSTMg/Ca values between 10° and 15°C when it exceeds 30% of the assemblage, and Invertocysta lacrymosa exceeds 15% when SSTMg/Ca values are between 18.6° and 23.5°C. However, comparing Pliocene and Pleistocene SSTMg/Ca values with present day summer values for the extant Impagidinium pallidum suggests a greater tolerance of higher temperatures in the past. This species occupies more than 5% of the assemblage at SSTMg/Ca values of 11.6-17.9°C in the Pliocene and Pleistocene, whereas present day summer SSTs are around -1.7 to 6.9°C. This observation questions the value of Impagidinium pallidum as reliable indicator of cold waters in older deposits, and may explain its bipolar distribution.
Resumo:
The Greenland ice sheet is accepted as a key factor controlling the Quaternary glacial scenario. However, the origin and mechanisms of major Arctic glaciation starting at 3.15 Ma and culminating at 2.74 Ma are still controversial. For this phase of intense cooling Ravelo et al. proposed a complex gradual forcing mechanism. In contrast, our new submillennial-scale paleoceanographic records from the Pliocene North Atlantic suggest a far more precise timing and forcing for the initiation of northern hemisphere glaciation (NHG), since it was linked to a 2-3 °C surface water warming during warm stages from 2.95 to 2.82 Ma. These records support previous models, claiming that the final closure of the Panama Isthmus (3.0- ~2.5 Ma induced an increased poleward salt and heat transport. Associated strengthening of North Atlantic Thermohaline Circulation and in turn, an intensified moisture supply to northern high latitudes resulted in the build-up of NHG, finally culminating in the great, irreversible climate crash at marine isotope stage G6 (2.74 Ma). In summary, there was a two-step threshold mechanism that marked the onset of NHG with glacial-to-interglacial cycles quasi-persistent until today.
Resumo:
In order to assess how insolation-driven climate change superimposed on sea level rise and millennial events influenced the Red Sea during the Holocene, we present new paleoceanographic records from two sediment cores to develop a comprehensive reconstruction of Holocene circulation dynamics in the basin. We show that the recovery of the planktonic foraminiferal fauna after the Younger Dryas was completed earlier in the northern than in the central Red Sea, implying significant changes in the hydrological balance of the northern Red Sea region during the deglaciation. In the early part of the Holocene, the environment of the Red Sea closely followed the development of the Indian summer monsoon and was dominated by a circulation mode similar to the current summer circulation, with low productivity throughout the central and northern Red Sea. The climatic signal during the late Holocene is dominated by a faunal transient event centered around 2.4 ka BP. Its timing corresponds to that of North Atlantic Bond event 2 and to a widespread regionally recorded dry period. This faunal transient is characterized by a more productive foraminiferal fauna and can be explained by an intensification of the winter circulation mode and high evaporation. The modern distribution pattern of planktonic foraminifera, reflecting the prevailing circulation system, was established after 1.7 ka BP.
Resumo:
Early and Mid-Pleistocene climate, ocean hydrography and ice sheet dynamics have been reconstructed using a high-resolution data set (planktonic and benthic d18O time series, faunal-based sea surface temperature (SST) reconstructions and ice-rafted debris (IRD)) record from a high-deposition-rate sedimentary succession recovered at the Gardar Drift formation in the subpolar North Atlantic (Integrated Ocean Drilling Program Leg 306, Site U1314). Our sedimentary record spans from late in Marine Isotope Stage (MIS) 31 to MIS 19 (1069-779 ka). Different trends of the benthic and planktonic oxygen isotopes, SST and IRD records before and after MIS 25 (~940 ka) evidence the large increase in Northern Hemisphere ice-volume, linked to the cyclicity change from the 41-kyr to the 100-kyr that occurred during the Mid-Pleistocene Transition (MPT). Beside longer glacial-interglacial (G-IG) variability, millennial-scale fluctuations were a pervasive feature across our study. Negative excursions in the benthic d18O time series observed at the times of IRD events may be related to glacio-eustatic changes due to ice sheets retreats and/or to changes in deep hydrography. Time series analysis on surface water proxies (IRD, SST and planktonic d18O) of the interval between MIS 31 to MIS 26 shows that the timing of these millennial-scale climate changes are related to half-precessional (10 kyr) components of the insolation forcing, which are interpreted as cross-equatorial heat transport toward high latitudes during both equinox insolation maxima at the equator.
Resumo:
The Cretaceous has long been recognized as a time when greenhouse conditions were fueled by elevated atmospheric CO2 and accompanied by perturbations of the global carbon cycle described as oceanic anoxic events (OAEs). Yet, the magnitude and frequency of temperature change during this interval of warm and equable climate are poorly constrained. Here we present a high-resolution record of sea-surface temperatures (SSTs) reconstructed using the TEX86 paleothermometer for a sequence of early Aptian organic-rich sediments deposited during the first Cretaceous OAE (OAE1a) at Shatsky Rise in the tropical Pacific. SSTs range from ~30 to ~36 °C and include two prominent cooling episodes of ~4 °C. The cooler temperatures reflect significant temperature instability in the tropics likely triggered by changes in carbon cycling induced by enhanced burial of organic matter. SST instability recorded during the early Aptian in the Pacific is comparable to that reported for the late Albian-early Cenomanian in the Atlantic, suggesting that such climate perturbations may have recurred during the Cretaceous with concomitant consequences for biota and the marine environment.
Resumo:
The Toba volcanic event, one of the largest eruptions during the Quaternary, is documented in marine sediment cores from the northeastern Arabian Sea. On the crest of the Murray Ridge and along the western Indian continental margin, we detected distinct concentration spikes and ash layers of rhyolithic volcanic shards near the marine isotope stage 5-4 boundary with the chemical composition of the "Youngest Toba Tuff". Time series of the Uk'37-alkenone index, planktic foraminiferal species, magnetic susceptibility, and sediment accumulation rates from this interval show that the Toba event occurred between two warm periods lasting a few millennia. Using Toba as an instantaneous stratigraphic marker for correlation between the marine- and ice-core chronostratigraphies, these two Arabian Sea climatic events correspond to Greenland interstadials 20 and 19, respectively. Our data sets thus depict substantial interstadial/stadial fluctuations in sea-surface temperature and surface-water productivity. We show that variable terrigenous (eolian) sediment supply played a crucial role in transferring and preserving the productivity signal in the sediment record. Within the provided stratigraphic resolution of several decades to centennials, none of these proxies shows a particular impact of the Toba eruption. However, our results are additional support that Toba, despite its exceptional magnitude, had only a minor impact on the evolution of low-latitude monsoonal climate on centennial to millennial time scales.
Resumo:
This study provides a theoretical assessment of the potential bias due to differential lateral transport on multi-proxy studies based on a range of marine microfossils. Microfossils preserved in marine sediments are at the centre of numerous proxies for paleoenvironmental reconstructions. The precision of proxies is based on the assumption that they accurately represent the overlying watercolumn properties and faunas. Here we assess the possibility of a syn-depositional bias in sediment assemblages caused by horizontal drift in the water column, due to differential settling velocities of sedimenting particles based on their shape, size and density, and due to differences in current velocities. Specifically we calculate the post-mortem lateral transport undergone by planktic foraminifera and a range of other biological proxy carriers (diatoms, radiolaria and fecal pellets transporting coccolithophores) in several regions with high current velocities. We find that lateral transport of different planktic foraminiferal species is minimal due to high settling velocities. No significant shape- or size-dependent sorting occurs before reaching the sediment, making planktic foraminiferal ideal proxy carriers. In contrast, diatoms, radiolaria and fecal pellets can be transported up to 500km in some areas. For example in the Agulhas current, transport can lead to differences of up to 2°C in temperature reconstructions between different proxies in response to settling velocities. Therefore, sediment samples are likely to contain different proportions of local and imported particles, decreasing the precision of proxies based on these groups and the accuracy of the temperature reconstruction.