916 resultados para chirped-pulse amplification system


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding arterial distensibility has shown to be important in the pathogenesis of cardiovascular abnormalities like hypertension. It is also known that arterial pulse wave velocity (PWV) is a measure of the elasticity or stiffness of peripheral arterial blood vessels. However, it generally requires complex instrumentations to have an accurate measurement and not suited for continual monitoring. In this paper, it describes a simple and non-intrusive method to detect the cardiovascular pulse from a human wrist above the radial artery and a fingertip. The main components of this proposed method are a piezoelectric transducer and a photo-plethysmography circuitry. 5 healthy adults (4 male) with age ranging from 25 to 38 years were recruited. The timing consistency of the detected pulsations is first evaluated and compared to that obtained from a commercial electrocardiogram. Furthermore, the derived PWV is then assessed by the predicted values attained from regression equations of two previous similar studies. The results show good correlations (p < 0.05) and similarities for the former and latter respectively. The simplicity and non-invasive nature of the proposed method can be attractive for even younger or badly disturbed patients. Moreover, it can be used for prolonged monitoring for the comfort of the patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of an all-optical communications infrastructure requires appropriate optical switching devices and supporting hardware. This thesis presents several novel fibre lasers which are useful pulse sources for high speed optical data processing and communications. They share several attributes in common: flexibility, stability and low-jitter output. They all produce short (picosecond) and are suitable as sources for soliton systems. The lasers are all-fibre systems using erbium-doped fibre for gain, and are actively-modelocked using a dual-wavelength nonlinear optical loop mirror (NOLM) as a modulator. Control over the operating wavelength and intra-cavity dispersion is obtained using a chirped in-fibre Bragg grating.Systems operating both at 76MHz and gigahertz frequencies are presented, the latter using a semiconductor laser amplifier to enhance nonlinear action in the loop mirror. A novel dual-wavelength system in which two linear cavities share a common modulator is presented with results which show that the jitter between the two wavelengths is low enough for use in switching experiments with data rates of up to 130Gbit/s.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents several advanced optical techniques that are crucial for improving high capacity transmission systems. The basic theory of optical fibre communications are introduced before optical solitons and their usage in optically amplified fibre systems are discussed. The design, operation, limitations and importance of the recirculating loop are illustrated. The crucial role of dispersion management in the transmission systems is then considered. Two of the most popular dispersion compensation methods - dispersion compensating fibres and fibre Bragg gratings - are emphasised. A tunable dispersion compensator is fabricated using the linear chirped fibre Bragg gratings and a bending rig. Results show that it is capable of compensating not only the second order dispersion, but also higher order dispersion. Stimulated Raman Scattering (SRS) are studied and discussed. Different dispersion maps are performed for all Raman amplified standard fibre link to obtain maximum transmission distances. Raman amplification is used in most of our loop experiments since it improves the optical signal-to-noise ratio (OSNR) and significantly reduces the nonlinear intrachannel effects of the transmission systems. The main body of the experimental work is concerned with nonlinear optical switching using the nonlinear optical loop mirrors (NOLMs). A number of different types of optical loop mirrors are built, tested and implemented in the transmission systems for noise suppression and 2R regeneration. Their results show that for 2R regeneration, NOLM does improve system performance, while NILM degrades system performance due to its sensitivity to the input pulse width, and the NALM built is unstable and therefore affects system performance.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this letter, we analyze and develop the required basis for a precise grating design in a scheme based on two oppositely chirped fiber Bragg gratings, and apply it in several examples which are numerically simulated. We obtain the interesting result that the broader bandwidth of the reshaped pulse, the shorter gratings required.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of hybrid erbium-doped fiber amplifier (EDFA)/Raman amplification on a spectrally efficient coherent-wavelength-division-multiplexed (CoWDM) optical communication system is experimentally studied and modeled. Simulations suggested that 23-dB Raman gain over an unrepeatered span of 124 km single-mode fiber would allow a decrease of the mean input power of ~6 dB for a fixed bit-error rate (BER). Experimentally we demonstrated 1.2-dB Q-factor improvement for a 2-Tb/s seven-band CoWDM with backward Raman amplification. The system delivered an optical signal-to-noise ratio of 35 dB at the output of the receiver preamplifier providing a worst-case BER of 2 × 10 -6 over 49 subcarriers at 42.8 Gbaud, leaving a system margin (in terms of Q -factor) of ~4 dB from the forward-error correction threshold.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze pulse propagation in an optical fiber with a periodic dispersion map and distributed amplification. Using an asymptotic theory and a momentum method, we identify a family of dispersion management schemes that are advantageous for massive multichannel soliton transmission. For the case of two-step dispersion maps with distributed Raman amplification to compensate for the fiber loss, we find special schemes that have optimal (chirp-free) launch point locations that are independent of the fiber dispersion. Despite the variation of dispersion with wavelength due to the fiber dispersion slope, the transmission in several different channels can be optimized simultaneously using the same optimal launch point. The theoretical predictions are verified by direct numerical simulations. The obtained results are applied to a practical multichannel transmission system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In children, the pain and anxiety associated with acute burn dressing changes can be severe, with drug treatment alone frequently proving to be inadequate. Virtual reality (VR) systems have been successfully trialled in limited numbers of adult and paediatric burn patients. Augmented reality (AR) differs from VR in that it overlays virtual images onto the physical world, instead of creating a complete virtual world. This prospective randomised controlled trial investigated the use of AR as an adjunct to analgesia and sedation in children with acute burns. Forty-two children (30 male and 12 female), with an age range of 3–14 years (median age 9 years) and a total burn surface area ranging from 1 to 16% were randomised into a treatment (AR) arm and a control (basic cognitive therapy) arm after administration of analgesia and/or sedation. Pain scores, pulse rates (PR), respiratory rates (RR) and oxygen saturations (SaO2) were recorded pre-procedurally, at 10 min intervals and post-procedurally. Parents were also asked to grade their child's overall pain score for the dressing change. Mean pain scores were significantly lower (p = 0.0060) in the AR group compared to the control group, as were parental pain assessment scores (p = 0.015). Respiratory and pulse rates showed significant changes over time within groups, however, these were not significantly different between the two study groups. Oxygen saturation did not differ significantly over time or between the two study groups. This trial shows that augmented reality is a useful adjunct to pharmacological analgesia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this paper, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the common mode voltage generated by the inverter is influenced by the AC-DC diode rectifier because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique is presented by a proper placement of the zero vectors to reduce the common mode voltage level, which leads to a cost effective shaft voltage reduction technique without load current distortion, while keeping the switching frequency constant. Analysis and simulations have been presented to investigate the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-component reaction-diffusion system introduced in [C. P. Schenk et al., Phys. Rev. Lett., 78 (1997), pp. 3781–3784] has become a paradigm model in pattern formation. It exhibits a rich variety of dynamics of fronts, pulses, and spots. The front and pulse interactions range in type from weak, in which the localized structures interact only through their exponentially small tails, to strong interactions, in which they annihilate or collide and in which all components are far from equilibrium in the domains between the localized structures. Intermediate to these two extremes sits the semistrong interaction regime, in which the activator component of the front is near equilibrium in the intervals between adjacent fronts but both inhibitor components are far from equilibrium there, and hence their concentration profiles drive the front evolution. In this paper, we focus on dynamically evolving N-front solutions in the semistrong regime. The primary result is use of a renormalization group method to rigorously derive the system of N coupled ODEs that governs the positions of the fronts. The operators associated with the linearization about the N-front solutions have N small eigenvalues, and the N-front solutions may be decomposed into a component in the space spanned by the associated eigenfunctions and a component projected onto the complement of this space. This decomposition is carried out iteratively at a sequence of times. The former projections yield the ODEs for the front positions, while the latter projections are associated with remainders that we show stay small in a suitable norm during each iteration of the renormalization group method. Our results also help extend the application of the renormalization group method from the weak interaction regime for which it was initially developed to the semistrong interaction regime. The second set of results that we present is a detailed analysis of this system of ODEs, providing a classification of the possible front interactions in the cases of $N=1,2,3,4$, as well as how front solutions interact with the stationary pulse solutions studied earlier in [A. Doelman, P. van Heijster, and T. J. Kaper, J. Dynam. Differential Equations, 21 (2009), pp. 73–115; P. van Heijster, A. Doelman, and T. J. Kaper, Phys. D, 237 (2008), pp. 3335–3368]. Moreover, we present some results on the general case of N-front interactions.