978 resultados para characters
Resumo:
DynaLearn (http://www.DynaLearn.eu) develops a cognitive artefact that engages learners in an active learning by modelling process to develop conceptual system knowledge. Learners create external representations using diagrams. The diagrams capture conceptual knowledge using the Garp3 Qualitative Reasoning (QR) formalism [2]. The expressions can be simulated, confronting learners with the logical consequences thereof. To further aid learners, DynaLearn employs a sequence of knowledge representations (Learning Spaces, LS), with increasing complexity in terms of the modelling ingredients a learner can use [1]. An online repository contains QR models created by experts/teachers and learners. The server runs semantic services [4] to generate feedback at the request of learners via the workbench. The feedback is communicated to the learner via a set of virtual characters, each having its own competence [3]. A specific feedback thus incorporates three aspects: content, character appearance, and a didactic setting (e.g. Quiz mode). In the interactive event we will demonstrate the latest achievements of the DynaLearn project. First, the 6 learning spaces for learners to work with. Second, the generation of feedback relevant to the individual needs of a learner using Semantic Web technology. Third, the verbalization of the feedback via different animated virtual characters, notably: Basic help, Critic, Recommender, Quizmaster & Teachable agen
Resumo:
Recent research has cast doubt on the reliability of bones and teeth for reconstructing phylogenetic relationships among higher primate species and genera. Herein, we investigate whether this problem is confined to hard tissues by examining the utility of higher primate soft-tissue characters for reconstructing phylogenetic relationships at low taxonomic levels. We use cladistic methods to analyze 197 soft-tissue characters for the extant hominoids and then compare the resulting phylogenetic hypotheses with the group's consensus molecular phylogeny, which is widely considered to be accurate. We show that the soft-tissue characters yield robust phylogenetic hypotheses that are compatible with the molecular phylogeny. Given the strength of the evidence for molecular phylogeny, these results indicate that, unlike craniodental hard-tissue characters, soft tissues are reliable for reconstructing phylogenetic relationships among higher primate species and genera. Thus, in higher primates at least, some types of morphological data are more useful than others for phylogeny reconstruction.
Resumo:
Arbuscular mycorrhizal (AM) fungi (Order Glomales, Class Zygomycetes) are a diverse group of soil fungi that form mutualistic associations with the roots of most species of higher plants. Despite intensive study over the past 25 years, the phylogenetic relationships among AM fungi, and thus many details of evolution of the symbiosis, remain unclear. Cladistic analysis was performed on fatty acid methyl ester (FAME) profiles of 15 species in Gigaspora and Scutellospora (family Gigasporaceae) by using a restricted maximum likelihood approach of continuous character data. Results were compared to a parsimony analysis of spore morphological characters of the same species. Only one tree was generated from each character set. Morphological and developmental data suggest that species with the simplest spore types are ancestral whereas those with complicated inner wall structures are derived. Spores of those species having a complex wall structure pass through stages of development identical to the mature stages of simpler spores, suggesting a pattern of classical Haeckelian recapitulation in evolution of spore characters. Analysis of FAME profiles supported this hypothesis when Glomus leptotichum was used as the outgroup. However, when Glomus etunicatum was chosen as the outgroup, the polarity of the entire tree was reversed. Our results suggest that FAME profiles contain useful information and provide independent criteria for generating phylogenetic hypotheses in AM fungi. The maximum likelihood approach to analyzing FAME profiles also may prove useful for many other groups of organisms in which profiles are empirically shown to be stable and heritable.
Resumo:
v.6:no.7(1934)
Resumo:
v.33:no.9(1975)
Resumo:
Cover title.
Resumo:
Frontispiece signed "Le Pautre." Engraved title-page.
Resumo:
Mode of access: Internet.
Resumo:
"First produced at ... Fincastle, Va., July 2d. 1886."
Resumo:
The letters written by Chesterfield to his son prior to October, 1739, and a few subsequent ones are omitted in this edition. Includes five letters not printed previously.
Resumo:
Edmons A4b.