976 resultados para centrifuged sewage sludge
Resumo:
The utilization of tannery sludge in agricultural areas can be an alternative for its disposal and recycling. Despite this procedure may cause the loss of nitrogen by ammonia volatilization, there is no information about this process in tropical soils. For two years a field experiment was carried out in Rolandia (Parana State, Brazil), to evaluate the amount of NH(3) volatilization due to tannery sludge application on agricultural soil. The doses of total N applied varied from zero to 1200 kg ha(-1), maintained at the surface for 89 days, as usual in this region. The alkalinity of the tannery sludge used was equivalent to between 262 and 361 g CaCO(3) per kg. Michaelis-Menten equation was adequate to estimate NH(3)-N volatilization kinetics. The relation between total nitrogen applied as tannery sludge and the potentially volatilized NH(3)-N, calculated by the chemical-kinetics equation resulted in an average determination coefficient of 0.87 (P > 0.01). In this period, the amount of volatilized NH(3) was more intense during the first 30 days; the time to reach half of the maximum NH(3) volatilization (K(m)) was 13 an 9 days for the first and second experiments, respectively. The total loss as ammonia in the whole period corresponded in average to 17.5% of the total N applied and to 35% of the NH(4)(+)-N present in the sludge. If tannery sludge is to be surface applied to supply N for crops, the amounts lost as NH(3) must be taken into consideration. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
It has been well documented that the optimum feedstock for anaerobic digesters consists of readily biodegradable compounds, as found in primary sludge or even a mixed substrate of primary and excess activated sludge. Due to the requirements of the Urban Wastewater Treatment Plant Directive of 1991, the quantities of secondary sludge generated is set to increase substantially. A pilot scale study was undertaken to evaluate the performance of both Mesophilic Anaerobic Digestion and Thermophilic Aerobic digestion in the treatment of secondary sludge. The results indicated that the anaerobic pilot scale digester achieved a greater solids destruction than the aerobic pilot plant averaging at 28% T.S. removal verses 20% for the aerobic digester, despite the fact that secondary sludge is the optimum feedstock for aerobic digestion. This can, however, be attributed to the greater biomass yield experienced with aerobic systems, and to the absence of Autothermal conditions. At present, the traditional technique of Mesophilic Anaerobic Digestion is in widespread application throughout Ireland, for the stabilisation of sewage sludge. There is only one Autothermal Thermophilic Aerobic Digester at present situated in Killarney, Co. Kerry. A further objectives of the study was to compare full-scale applications of Mesophilic Anaerobic Digestion to ATAD. Two Sludge Treatment plants, situated in Co. Kerry, were used for this purpose, and were assessed mainly under the following headings; process stability, solids reduction on average, the ATAD plant in Killarney has the advantage of producing a “Class A” Biosolid in terms of pathogen reduction, and can effectively treat double the quantity of sludge. In addition, economically the ATAD plant is cheaper to run, costing €190 / t.d.s verses €211 / t.d.s. for the anaerobic digester in Tralee. An overview of additional operational Anaerobic Digestion Plants throughout Ireland is also presented.
Resumo:
Hydrothermal carbonization (HTC) is a thermochemical process used in the production of charred matter similar in composition to coal. It involves the use of wet, carbohydrate feedstock, a relatively low temperature environment (180 °C-350 °C) and high autogenous pressure (up to 2,4 MPa) in a closed system. Various applications of the solid char product exist, opening the way for a range of biomass feedstock materials to be exploited that have so far proven to be troublesome due to high water content or other factors. Sludge materials are investigated as candidates for industrial-scale HTC treatment in fuel production. In general, HTC treatment of pulp and paper industry sludge (PPS) and anaerobically digested municipal sewage sludge (ADS) using existing technology is competitive with traditional treatment options, which range in price from EUR 30-80 per ton of wet sludge. PPS and ADS can be treated by HTC for less than EUR 13 and 33, respectively. Opportunities and challenges related to HTC exist, as this relatively new technology moves from laboratory and pilot-scale production to an industrial scale. Feedstock materials, end-products, process conditions and local markets ultimately determine the feasibility of a given HTC operation. However, there is potential for sludge materials to be converted to sustainable bio-coal fuel in a Finnish context.
Resumo:
Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves.
Resumo:
The use of sewage sludge in agricultural land as a means of sludge disposal and recycling has been shown to be economical and suitable because of the presence of nutrients such as nitrogen and phosphorus. However, municipal sludges often contain high quantities of toxic metals and other compounds that must be removed for its safe use in agricultural soils. The biological leaching of metals from sewage sludges has been shown to be a promising technique for metal detoxifying in such complex matrix. The process efficiency is dependent on several physico-chemical parameters, such as total solids concentration, metal forms, pH-ORP, and temperature. Scale-up of the process has not yet been defined and is still pursuing the correct operational design. Current research involving the bioleaching of metals from sewage sludge and its application to land, which affects soil physical properties, are presented and discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The application of industrial and municipal waste in the soil may be recommended by your corrective and fertilizer value, giving the great potential for agricultural reuse, improves physical, chemical and biological soil properties and helps to reduce the consumption of fertilizers and correctives, without contamination by heavy metals. This study aimed to evaluate the absorption of nutrients and potentially toxic elements, and their effect on the development of soybean (Glycine max (L.) Merrill) grown under No-Tillage system (NT). The work was developed in the field, at the Experimental Farm Lageado - FCA / UNESP, Botucatu (SP) in an Oxisol under tropical climate of altitude. The experimental design was randomized blocks, factorial 4x4+1, with four replications. The treatments consisted of four residues: two sewage sludge, one centrifuged and treated with quicklime (LC) and a biodigester (LB) and two industrial wastes: steel slag (E) and lime mud (Lcal) , applied in dosages of 0, 2, 4 and 8 Mg ha-1. The surface application of LC, LB, Lcal and E residues in soil under NT favored the development of soybean, with no heavy metal contamination, given the current legislation.
Resumo:
The sludge generated by sewage treatment which meets regulatory standards can be used in agriculture. With this understanding, the focus of this study is the evaluation of the agricultural characteristics and inorganic substances in excess activated sludge, which was subjected to drying in a greenhouse. The variables (factor) evaluated during the drying process were: type of sludge (digested or not digested), addition of lime to the sludge, and the physical layout and rotation of sludge in the greenhouse. The parameters monitored for this assessment were moisture, volatile solids and pH. The greenhouse cover and sides were made of translucent plastic to allow the penetration of solar radiation and prevent water from entering. A impermeable floor was used. The sludge was generated in sewage treatment plants located in the metropolitan region of Grande Vitoria, Espirito Santo, Brazil. The solar drying of wastewater sludge in a greenhouse presented satisfactory results.
Resumo:
Two highly efficient (K2CO3/sludge carbon and ZnCl2/sludge carbon) solids were prepared by chemical addition following carbonization at 800 °C and were tested for anaerobic reduction of tartrazine dye in a continuous upflow packed-bed biological reactor, and their performance was compared to that of commercial activated carbon (CAC). The chemical and structural information of the solids was subjected to various characterizations in order to understand the mechanism for anaerobic decolorization, and efficiency for SBCZN800 and SBCPC800 materials was 87% and 74%, respectively, at a short space time (τ) of 2.0 min. A first-order kinetic model fitted the experimental points and kinetic constants of 0.40, 0.92 and 1.46 min(-1) were obtained for SBCZN800, SBCPC800 and CAC, respectively. The experimental results revealed that performance of solids in the anaerobic reduction of tartrazine dye can depend on several factors including chemical agents, carbonization, microbial population, chemical groups and surface chemistry. The Langmuir and Freundlich models are successfully described in the batch adsorption data. Based on these observations, a cost-effective sludge-based catalyst can be produced from harmful sewage sludge for the treatment of industrial effluents.
Resumo:
Dry sewage sludge are being considered as a possible energy source for direct firing. They have interesting properties to be used as an alternative fuel, but also other characteristics must be considered from the point of view of its safe operation: the most important are ignition sensitivity, explosion severity, thermal sensitivity and thermal stability. The aim of this study was to determine if sewage sludge have different characteristics due to different locations or seasons and how this influences their flammability properties. To study these characteristics sludge samples were selected from different locations in Spain, taken during different seasons. In addition, relationships between flammability parameters and chemical analysis were observed. Some parameters can be controlled during normal operation, such as granulometry or humidity, and may mean a decrease in the risk of explosion. Those relationships are well known for other dusts materials, like coal, but not yet for sewage sludge dusts. Finally, properties related to spontaneous combustion were determined (thermal susceptibility and stability). The addition of those properties to the study provides an overview of the thermal behavior of sewage sludge during their utilization, including transport and storage.