957 resultados para carbon emission


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The best field emission properties from carbon nanotube cathodes were obtained when their heights, diameters and spacings were optimized. Field emission currents as high as 10 mA were obtained from 1 cm × 1 cm vertically aligned CNT cathode with optimized parameters grown using dc plasma CVD in situ. It was found that in order to obtain large emission current of >10 mA, space charge effects within the electron beam must be taken into account.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The overall aim of this work is to produce arrays of field emitting microguns, based on carbon nanotubes, which can be utilised in the manufacture of large area field emitting displays, parallel e-beam lithography systems and electron sources for high frequency amplifiers. This paper will describe the work carried out to produce patterned arrays of aligned multiwall carbon nanotubes (MWCNTs) using a dc plasma technique and a Ni catalyst. We will discuss how the density of the carbon nanotube/fibres can be varied by reducing the deposition yield through nickel interaction with a diffusion layer or by direct lithographic patterning of the Ni catalyst to precisely define the position of each nanotube/fibre. Details of the field emission behaviour of the different arrays of MWCNTS will also be presented. © 2002 Published by Elsevier Science B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A microelectronic parallel electron-beam lithography system using an array of field emitting microguns is currently being developed. This paper investigates the suitability of various carbon based materials for the electron source in this device, namely tetrahedrally bonded amorphous carbon (ta-C), nanoclustered carbon and carbon nanotubes. Ta-C was most easily integrated into a gated field emitter structure and various methods, such as plasma and heavy ion irradiation, were used to induce emission sites in the ta-C. However, the creation of such emission sites at desired locations appeared to be difficult/random in nature and thus the material was unsuitable for this application. In contrast, nanoclustered carbon material readily field emits with a high site density but the by-products from the deposition process create integration issues when using the material in a microelectronic gated structure. Carbon nanotubes are currently the most promising candidate for use as the emission source. We have developed a high yield and clean (amorphous carbon by-product free) PECVD process to deposit single free standing nanotubes at desired locations with exceptional uniformity in terms of nanotube height and diameter. Field emission from an array of nanotubes was also obtained. © 2001 Elsevier Science B.V.

Relevância:

40.00% 40.00%

Publicador: