992 resultados para boundary element
Resumo:
This paper introduces the p-adaptive version of the boundary element method as a natural extension of the homonymous finite element approach. After a brief introduction to adaptive techniques through their finite element formulation in elastostatics, the concepts are cast into the boundary element environment. Thus, the p-adaptive version of boundary integral methods is shown to be a generalization of already well known ideas. In order to show the power of these numerical procedures, the results of two practical analysis using both methods are presented.
Resumo:
Strong motion records obtained in instrumented short-span bridges show the importance of the abutments in the dynamic response of the structure. Existing models study the pier foundation influence but not the abutment performance. This work proposes two and three dimensional boundary element models in the frequency domain and studies the dimensionless dynamic stiffness of standard bridge abutments.
Resumo:
The soil-structure interaction at bridge abutments may introduce important changes in the dynamic properties of short to medium span bridges. The paper presents the results obtained, through the use of the Boundary Element Method (B.E.M.) technique in several typical situations, including semiinfinite and layered media. Both stiffness and damping properties are included.
Resumo:
Finite element hp-adaptivity is a technology that allows for very accurate numerical solutions. When applied to open region problems such as radar cross section prediction or antenna analysis, a mesh truncation method needs to be used. This paper compares the following mesh truncation methods in the context of hp-adaptive methods: Infinite Elements, Perfectly Matched Layers and an iterative boundary element based methodology. These methods have been selected because they are exact at the continuous level (a desirable feature required by the extreme accuracy delivered by the hp-adaptive strategy) and they are easy to integrate with the logic of hp-adaptivity. The comparison is mainly based on the number of degrees of freedom needed for each method to achieve a given level of accuracy. Computational times are also included. Two-dimensional examples are used, but the conclusions directly extrapolated to the three dimensional case.
Resumo:
When non linear physical systems of infinite extent are modelled, such as tunnels and perforations, it is necessary to simulate suitably the solution in the infinite as well as the non linearity. The finite element method (FEM) is a well known procedure for simulating the non linear behavior. However, the treatment of the infinite field with domain truncations is often questionable. On the other hand, the boundary element method (BEM) is suitable to simulate the infinite behavior without truncations. Because of this, by the combination of both methods, suitable use of the advantages of each one may be obtained. Several possibilities of FEM-BEM coupling and their performance in some practical cases are discussed in this paper. Parallelizable coupling algorithms based on domain decomposition are developed and compared with the most traditional coupling methods.
Resumo:
Seismic evaluation methodology is applied to an existing viaduct in the south of Spain, near Granada, which is a medium seismicity region. The influence of both geology and topography in the spatial variability of ground motion are studied as well as seismic hazard analysis and ground motion characterization. Artificial hazard-consistent ground motion records are synthesised applying seismic hazard analysis and site effects are estimated through a diffraction study. Direct BEM is used to calculate the valley displacement response to vertically propagating SV waves and transfer functions are generated allowing the transformation of free field motion to motion at each support. A closed formulae is used to estimate these transfer function. Finally, the results obtained are compared.
Resumo:
The analysis of deformation in soils is of paramount importance in geotechnical engineering. For a long time the complex behaviour of natural deposits defied the ingenuity of engineers. The time has come that, with the aid of computers, numerical methods will allow the solution of every problem if the material law can be specified with a certain accuracy. Boundary Techniques (B.E.) have recently exploded in a splendid flowering of methods and applications that compare advantegeously with other well-established procedures like the finite element method (F.E.). Its application to soil mechanics problems (Brebbia 1981) has started and will grow in the future. This paper tries to present a simple formulation to a classical problem. In fact, there is already a large amount of application of B.E. to diffusion problems (Rizzo et al, Shaw, Chang et al, Combescure et al, Wrobel et al, Roures et al, Onishi et al) and very recently the first specific application to consolidation problems has been published by Bnishi et al. Here we develop an alternative formulation to that presented in the last reference. Fundamentally the idea is to introduce a finite difference discretization in the time domain in order to use the fundamental solution of a Helmholtz type equation governing the neutral pressure distribution. Although this procedure seems to have been unappreciated in the previous technical literature it is nevertheless effective and straightforward to implement. Indeed for the special problem in study it is perfectly suited, because a step by step interaction between the elastic and flow problems is needed. It allows also the introduction of non-linear elastic properties and time dependent conditions very easily as will be shown and compares well with performances of other approaches.
Resumo:
Strong motion obtained in instrumental short-span bridges show the importance of the abutments in the dynamic response of the whole structure. Many models have been used in order to take into account the influence of pier foundations although no reliable ones have been used to analyse the abutment performance. In this work three-dimensional Boundary Element models in frequency domain have been proposed and dimensionless dynamic stiffness of standard bridge abutments have been obtained.
Resumo:
The program PECET (Boundary Element Program in Three-Dimensional Elasticity) is presented in this paper. This program, written in FORTRAN V and implemen ted on a UNIVAC 1100,has more than 10,000 sentences and 96 routines and has a lot of capabilities which will be explained in more detail. The object of the program is the analysis of 3-D piecewise heterogeneous elastic domains, using a subregionalization process and 3-D parabolic isopara, metric boundary elements. The program uses special data base management which will be described below, and the modularity followed to write it gives a great flexibility to the package. The Method of Analysis includes an adaptive integration process, an original treatment of boundary conditions, a complete treatment of body forces, the utilization of a Modified Conjugate Gradient Method of solution and an original process of storage which makes it possible to save a lot of memory.
Resumo:
An actual case of an underground railway in the neighbourhood of habitation buildings has been analyzed. The study has been based on a twodimensional BEM model including a tunnel and a typical building. The soil properties were obtained using geophysical techniques. After a sensitivity study, the model has been simplyfied and validated by comparison with "in situ" measurements. Using this simplyfied model, a parametric study has been done including trenches and walls of different materials and different depths at two different distances from the tunnel. The reductions obtained with the different solutions can then be compared.
Resumo:
A general theory that described the B.I.E.M. in steady-state elastodynamics is developed. A comprehensive formulation for homogeneous and heterogeneous media is presented and also some results in practical cases as well as a general review of several other possibilities.
Resumo:
This work focuses on the analysis of a structural element of MetOP-A satellite. Given the special interest in the influence of equipment installed on structural elements, the paper studies one of the lateral faces on which the Advanced SCATterometer (ASCAT) is installed. The work is oriented towards the modal characterization of the specimen, describing the experimental set-up and the application of results to the development of a Finite Element Method (FEM) model to study the vibro-acoustic response. For the high frequency range, characterized by a high modal density, a Statistical Energy Analysis (SEA) model is considered, and the FEM model is used when modal density is low. The methodology for developing the SEA model and a compound FEM and Boundary Element Method (BEM) model to provide continuity in the medium frequency range is presented, as well as the necessary updating, characterization and coupling between models required to achieve numerical models that match experimental results.
Resumo:
In this chapter some applications of boundary element techniques to dynamic problems are presented. First, the basic theory is briefly reviewed in order to provide the necessary background to interpret the numerical results (for a fuller account of elastodynamic theory we recommend a study of the specialized literature). The second part of the chapter is devoted to the numerical implementation of the BEM. The presentation is based on the steady-state solution because this is the area in which most experience exists. This is by no means a limitation of the BEM method, and the use of integral transformations to obtain transient solutions is a well established procedure. Finally, in the third part three examples are presented. The first example is the steady-state solution of a plate under cyclic forces with and without a crack. The second example relies on the determination of soil compliances necessary to study soil-structure interaction and the third example treats the problem of the influence of different incidence angles of incoming waves in foundations. The last two examples are relevant to earthquake engineering problems for which the BEM is very well suited.
Resumo:
In this chapter we will introduce the reader to the techniques of the Boundary Element Method applied to simple Laplacian problems. Most classical applications refer to electrostatic and magnetic fields, but the Laplacian operator also governs problems such as Saint-Venant torsion, irrotational flow, fluid flow through porous media and the added fluid mass in fluidstructure interaction problems. This short list, to which it would be possible to add many other physical problems governed by the same equation, is an indication of the importance of the numerical treatment of the Laplacian operator. Potential theory has pioneered the use of BEM since the papers of Jaswon and Hess. An interesting introduction to the topic is given by Cruse. In the last five years a renaissance of integral methods has been detected. This can be followed in the books by Jaswon and Symm and by Brebbia or Brebbia and Walker.In this chapter we shall maintain an elementary level and follow a classical scheme in order to make the content accessible to the reader who has just started to study the technique. The whole emphasis has been put on the socalled "direct" method because it is the one which appears to offer more advantages. In this section we recall the classical concepts of potential theory and establish the basic equations of the method. Later on we discuss the discretization philosophy, the implementation of different kinds of elements and the advantages of substructuring which is unavoidable when dealing with heterogeneous materials.
Resumo:
In this chapter, we are going to describe the main features as well as the basic steps of the Boundary Element Method (BEM) as applied to elastostatic problems and to compare them with other numerical procedures. As we shall show, it is easy to appreciate the adventages of the BEM, but it is also advisable to refrain from a possible unrestrained enthusiasm, as there are also limitations to its usefulness in certain types of problems. The number of these problems, nevertheless, is sufficient to justify the interest and activity that the new procedure has aroused among researchers all over the world. Briefly speaking, the most frequently used version of the BEM as applied to elastostatics works with the fundamental solution, i.e. the singular solution of the governing equations, as an influence function and tries to satisfy the boundary conditions of the problem with the aid of a discretization scheme which consists exclusively of boundary elements. As in other numerical methods, the BEM was developed thanks to the computational possibilities offered by modern computers on totally "classical" basis. That is, the theoretical grounds are based on linear elasticity theory, incorporated long ago into the curricula of most engineering schools. Its delay in gaining popularity is probably due to the enormous momentum with which Finite Element Method (FEM) penetrated the professional and academic media. Nevertheless, the fact that these methods were developed before the BEM has been beneficial because de BEM successfully uses those results and techniques studied in past decades. Some authors even consider the BEM as a particular case of the FEM while others view both methods as special cases of the general weighted residual technique. The first paper usually cited in connection with the BEM as applied to elastostatics is that of Rizzo, even though the works of Jaswon et al., Massonet and Oliveira were published at about the same time, the reason probably being the attractiveness of the "direct" approach over the "indirect" one. The work of Tizzo and the subssequent work of Cruse initiated a fruitful period with applicatons of the direct BEM to problems of elastostacs, elastodynamics, fracture, etc. The next key contribution was that of Lachat and Watson incorporating all the FEM discretization philosophy in what is sometimes called the "second BEM generation". This has no doubt, led directly to the current developments. Among the various researchers who worked on elastostatics by employing the direct BEM, one can additionallly mention Rizzo and Shippy, Cruse et al., Lachat and Watson, Alarcón et al., Brebbia el al, Howell and Doyle, Kuhn and Möhrmann and Patterson and Sheikh, and among those who used the indirect BEM, one can additionally mention Benjumea and Sikarskie, Butterfield, Banerjee et al., Niwa et al., and Altiero and Gavazza. An interesting version of the indirct method, called the Displacement Discontinuity Method (DDM) has been developed by Crounh. A comprehensive study on various special aspects of the elastostatic BEM has been done by Heisse, while review-type articles on the subject have been reported by Watson and Hartmann. At the present time, the method is well established and is being used for the solution of variety of problems in engineering mechanics. Numerous introductory and advanced books have been published as well as research-orientated ones. In this sense, it is worth noting the series of conferences promoted by Brebbia since 1978, wich have provoked a continuous research effort all over the world in relation to the BEM. In the following sections, we shall concentrate on developing the direct BEM as applied to elastostatics.