987 resultados para body segment parameters
Resumo:
Current technology trends in medical device industry calls for fabrication of massive arrays of microfeatures such as microchannels on to nonsilicon material substrates with high accuracy, superior precision, and high throughput. Microchannels are typical features used in medical devices for medication dosing into the human body, analyzing DNA arrays or cell cultures. In this study, the capabilities of machining systems for micro-end milling have been evaluated by conducting experiments, regression modeling, and response surface methodology. In machining experiments by using micromilling, arrays of microchannels are fabricated on aluminium and titanium plates, and the feature size and accuracy (width and depth) and surface roughness are measured. Multicriteria decision making for material and process parameters selection for desired accuracy is investigated by using particle swarm optimization (PSO) method, which is an evolutionary computation method inspired by genetic algorithms (GA). Appropriate regression models are utilized within the PSO and optimum selection of micromilling parameters; microchannel feature accuracy and surface roughness are performed. An analysis for optimal micromachining parameters in decision variable space is also conducted. This study demonstrates the advantages of evolutionary computing algorithms in micromilling decision making and process optimization investigations and can be expanded to other applications
Resumo:
We compute families of symmetric periodic horseshoe orbits in the restricted three-body problem. Both the planar and three-dimensional cases are considered and several families are found.We describe how these families are organized as well as the behavior along and among the families of parameters such as the Jacobi constant or the eccentricity. We also determine the stability properties of individual orbits along the families. Interestingly, we find stable horseshoe-shaped orbit up to the quite high inclination of 17◦
Resumo:
The objective of this work was to determine the effect of environmental variables and supplementation levels on physiological parameters of Moxotó goats in confined and semi-confined rising systems, in the Brazilian semi-arid region. The semi-confined individuals were kept on a grass based diet during the day and arrested in the end of the afternoon. The confined animals were kept in a management center, receiving two diets composed by forage cactus and maniçoba hay into two different levels (0.5 and 1.5% of the body weight). Inside the management center and in the external environment the environmental comfort parameters were set high during the afternoon period characterizing a situation of thermal discomfort for the animals. During the morning the semi-confined animals presented an average respiratory frequency (69.5 mov min-1) and rectal temperature (39.5 ºC) higher than the confined ones (62.6 mov min-1 and 39.0 ºC, respectively). The confined and semi-confined animals were able to maintain their rectal temperature within normal limits, with increase in the cardiac beatings rate and respiratory frequency. The greater percentage of the used supplementations (1.5%) seemed to increase rectal temperature in the two studied rising systems.
Resumo:
Left ventricular diastolic dysfunction plays an important role on heart failure progression. In order to obtain additional reference values of left ventricular diastolic parameters and investigate influence of common variables, peak E wave (peak E), peak A wave (peak A), E/A ratio (E/A), E wave deceleration time (EDT) and isovolumic relaxation time (IRVT) were studied in 40 clinically healthy dogs, by pulsed wave Doppler. The following values were obtained: peak E = 0.747 ± 0.117 m/s, peak A = 0.487 ± 0.062 m/s, E/A = 1.533 ± 0.198, EDT = 88.7 ± 9.2 ms and IRVT = 0.080 ± 0.009 s. Some parameters were influenced by heart rate (peak E, peak A and IRVT), by age (peak A and E/A) and by body weight (TRIV). Gender influence was absent. Values obtained can be used as reference for canine specimens but its interpretation should consider on the influence of related variables.
Resumo:
Obesity is one of the most frequent nutritional problems in companion animals and can lead to severe health problems in dogs and cats, such as cardiovascular diseases. This research aimed to evaluate the structural and functional cardiac changes after weight loss in obese dogs. Eighteen obese healthy dogs were assigned into three different groups, according with their initial body weight: Group I (dogs up to 15 kg), Group II (dogs weighing between 15.1 and 30 kg), and Group III (dogs weighing over 30 kg). The animals were submitted to a caloric restriction weight-loss program until they lose 15% of the body weight. The M-mode echocardiogram, electrocardiogram, and blood pressure evaluations were performed before the diet has started and after the dogs have reached the target weight. Data showed a decrease in left ventricular free wall thickness during diastole and systole in Group III, decrease in the systolic blood pressure in Group III, and also in the mean blood pressure in Group II. It was possible to conclude that the weight loss program can reverse structural cardiac changes such as left ventricle eccentric hypertrophy in dogs weighing more than 30 kg, and decrease the arterial blood pressure in obese dogs.
Resumo:
Abstract: Magellanic penguins (Spheniscus magellanicus) usually arrive in poor body conditions at Brazilian beaches during the winter. Hematology provides valuable information about clinical and immunity status of the animals. The aims of this study were to determine the hematologic, total plasma protein (TPP) and fibrinogen profiles of young and adult magellanic penguins in PROAMAR and CETAS-SC, relating these results with the state of health and survival possibility of the animals. In Paraná 14 animals were evaluated in pre and eight in post-rehabilitation and 29 animals were evaluated in Santa Catarina after rehabilitation. Before rehabilitation, all animals showed weakness. In hematological exams of these animals, we found that anemia was present in 83% of the penguins that died and 50% of those which survived. The heterophils/lymphocytes (H/L) ratio was 3.87±0.57 in animals that died, significantly higher than the average of 2.20±0.30 for animals that survived. These two parameters are useful to assess the survival possibility of animals to rehabilitation. The body condition score was positively correlated with hematocrit and TPP, and negatively correlated with H/L ratio. After rehabilitation, the values were similar to other animals of the family Spheniscidae, with averages ranging from 1.64 to 1.90x106 erythrocytes/μL; 43.38 to 48.80% of hematocrit; 12.45 to 13.52g/dL of hemoglobin; 8,684 to 14,011 leukocytes/μL; 4,767 to 8,041 heterophils/μL; 3,215 to 4,951 lymphocytes/μL; 95 to 655 eosinophils/μl; 179.8 to 277.9 monocytes/μL; 141 to 184.9 basophils/μL; and 1.26 to 1.74 of H/L ratio. These parameters can therefore be used as reference values and release parameters for young and adult Magellanic penguins in captivity on the rehabilitation centers.
Resumo:
A three degree of freedom model of the dynamic mass at the middle of a test sample, resembling a Stockbridge neutraliser, is introduced. This model is used to identify the hereby called equivalent complex cross section flexural stiffness (ECFS) of the beam element which is part of the whole test sample. This ECFS, once identified, gives the effective cross section flexural stiffness of the beam as well as its effective damping, measured as the loss factor of an equivalent viscoelastic beam. The beam element of the test sample may be of any complexity, such as a segment of stranded cable of the ACSR type. These data are important parameters for the design of overhead power transmission lines and other cable structures. A cost function is defined and used in the identification of the ECFS. An experiment, designed to measure the dynamic masses of two test samples, is described. Experimental and identified results are presented and discussed.
Resumo:
A three degree of freedom model of the dynamic mass at the middle of a test sample, resembling a Stockbridge neutraliser, is introduced. This model is used to identify the hereby called equivalent complex cross section flexural stiffness (ECFS) of the beam element which is part of the whole test sample. This ECFS, once identified, gives the effective cross section flexural stiffness of the beam as well as its effective damping, measured as the loss factor of an equivalent viscoelastic beam. The beam element of the test sample may be of any complexity, such as a segment of stranded cable of the ACSR type. These data are important parameters for the design of overhead power transmission lines and other cable structures. A cost function is defined and used in the identification of the ECFS. An experiment, designed to measure the dynamic masses of two test samples, is described. Experimental and identified results are presented and discussed.
Resumo:
The assessment of fluid volume in neonates by a noninvasive, inexpensive, and fast method can contribute significantly to increase the quality of neonatal care. The objective of the present study was to calibrate an acquisition system and software to estimate the bioelectrical impedance parameters obtained by a method of bioelectrical impedance spectroscopy based on step response and to develop specific equations for the neonatal population to determine body fluid compartments. Bioelectric impedance measurements were performed by a laboratory homemade instrument. The volumes were estimated in a clinical study on 30 full-term neonates at four different times during the first month of life. During the first 24 hours of life the total body water, extracellular water and intracellular water were 2.09 ± 0.25, 1.20 ± 0.19, and 0.90 ± 0.25 liters, respectively. By the 48th hour they were 1.87 ± 0.27, 1.08 ± 0.17, and 0.79 ± 0.21 liters, respectively. On the 10th day they were 2.02 ± 0.25, 1.29 ± 0.21, and 0.72 ± 0.14 liters, respectively, and after 1 month they were 2.34 ± 0.27, 1.62 ± 0.20, and 0.72 ± 0.13 liters, respectively. The behavior of the estimated volume was correlated with neonatal body weight changes, leading to a better interpretation of such changes. In conclusion, this study indicates the feasibility of bioelectrical impedance spectroscopy as a method to help fluid administration in intensive care neonatal units, and also contribute to the development of new equations to estimate neonatal body fluid contents.
Resumo:
Our objective was to determine if automated peritoneal dialysis (APD) leads to changes in nutritional parameters of patients treated by continuous ambulatory peritoneal dialysis (CAPD). Twenty-six patients (15 males; 50.5 ± 14.3 years) were evaluated during CAPD while training for APD and after 3 and 6 months of APD. Body fat was assessed by the sum of skinfold thickness and the other body compartments were assessed by bioelectrical impedance. During the 6-month follow-up, 12 patients gained more than 1 kg (GW group), 8 patients lost more than 1 kg (LW group), and 6 patients maintained body weight (MW group). Except for length on dialysis that was longer for the LW group compared with the GW group, no other differences were found between the groups at baseline. After 6 months on APD, the LW group had a reduction in body fat (24.5 ± 7.7 vs 22.1 ± 7.3 kg; P = 0.01), body cell mass (22.6 ± 6.2 vs 21.6 ± 5.8 kg, P = 0.02) and phase angle (5.4 ± 0.9 vs 5.1 ± 0.8 degrees, P = 0.004). In the GW group, body fat (25 ± 7.6 vs 27.2 ± 7.6 kg, P = 0.001) and body cell mass (20.1 ± 3.9 vs 20.8 ± 4.0 kg, P = 0.05) were increased. In the present study, different patterns of change in body composition were found. The length of previous dialysis treatment seems to be the most important factor in determining these nutritional modifications.
Resumo:
Heart rate variability (HRV) provides important information about cardiac autonomic modulation. Since it is a noninvasive and inexpensive method, HRV has been used to evaluate several parameters of cardiovascular health. However, the internal reproducibility of this method has been challenged in some studies. Our aim was to determine the intra-individual reproducibility of HRV parameters in short-term recordings obtained in supine and orthostatic positions. Electrocardiographic (ECG) recordings were obtained from 30 healthy subjects (20-49 years, 14 men) using a digital apparatus (sampling ratio = 250 Hz). ECG was recorded for 10 min in the supine position and for 10 min in the orthostatic position. The procedure was repeated 2-3 h later. Time and frequency domain analyses were performed. Frequency domain included low (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) bands. Power spectral analysis was performed by the autoregressive method and model order was set at 16. Intra-subject agreement was assessed by linear regression analysis, test of difference in variances and limits of agreement. Most HRV measures (pNN50, RMSSD, LF, HF, and LF/HF ratio) were reproducible independent of body position. Better correlation indexes (r > 0.6) were obtained in the orthostatic position. Bland-Altman plots revealed that most values were inside the agreement limits, indicating concordance between measures. Only SDNN and NNv in the supine position were not reproducible. Our results showed reproducibility of HRV parameters when recorded in the same individual with a short time between two exams. The increased sympathetic activity occurring in the orthostatic position probably facilitates reproducibility of the HRV indexes.
Resumo:
Metabolic syndrome (MS) is a multifactorial disease involving inflammatory activity and endothelial dysfunction. The aim of the present study was to evaluate the relationship between the changes in lipoperoxidation, in immunological and biochemical parameters and nitric oxide metabolite (NOx) levels in MS patients. Fifty patients with MS (4 males/46 females) and 50 controls (3 males/47 females) were studied. Compared to control (Mann-Whitney test), MS patients presented higher serum levels (P < 0.05) of fibrinogen: 314 (185-489) vs 262 (188-314) mg/dL, C-reactive protein (CRP): 7.80 (1.10-46.50) vs 0.70 (0.16-5.20) mg/dL, interleukin-6: 3.96 (3.04-28.18) vs 3.33 (2.55-9.63) pg/mL, uric acid: 5.45 (3.15-9.65) vs 3.81 (2.70-5.90) mg/dL, and hydroperoxides: 20,689 (19,076-67,182) vs 18,636 (15,926-19,731) cpm. In contrast, they presented lower (P < 0.05) adiponectin: 7.11 (3.19-18.22) vs 12.31 (9.11-27.27) µg/mL, and NOx levels: 5.69 (2.36-8.18) vs 6.72 (5.14-12.43) µM. NOx was inversely associated (Spearman’s rank correlation) with body mass index (r = -0.2858, P = 0.0191), insulin resistance determined by the homeostasis model assessment (r = -0.2530, P = 0.0315), CRP (r = -0.2843, P = 0.0171) and fibrinogen (r = -0.2464, P = 0.0413), and positively correlated with hydroperoxides (r = 0.2506, P = 0.0408). In conclusion, NOx levels are associated with obesity, insulin resistance, oxidative stress, and inflammatory markers. The high uric acid levels together with reactive oxygen species generation may be responsible for the reduced NO levels, which in turn lead to endothelial dysfunction. The elevated plasma chemiluminescence reflecting both increased plasma oxidation and reduced antioxidant capacity may play a role in the MS mechanism.
Resumo:
Human serum paraoxonase contributes to the anti-atherogenic effect of high-density lipoprotein cholesterol (HDL-C) and has been shown to protect both low-density lipoprotein cholesterol (LDL-C) and HDL-C against lipid peroxidation. We investigated the effects of rosiglitazone on paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus [50 patients (30 males, 20 females); mean±SD age: 58.7±9.2 years, body mass index: 28.2±4.1'kg/m2], in whom glucose control could not be achieved despite treatment with metformin, sulphonylurea, and/or insulin. The patients were given 4'mg/day rosiglitazone for 3 months in addition to their usual treatment. Serum paraoxonase activity, malondialdehyde, homocysteine, and lipid profile were measured at the time of initiation and at the end of therapy with rosiglitazone. After rosiglitazone therapy, serum levels of HDL-C, apolipoprotein A-1, and paraoxonase activity increased significantly (P<0.05) and malondialdehyde, homocysteine, lipoprotein(a), and glucose levels decreased significantly (P<0.05), but no significant changes in levels of total cholesterol and apolipoprotein B were observed. Triglyceride levels also increased significantly (P<0.05). Rosiglitazone treatment led to an improvement in glycemic control and to an increase in paraoxonase activity and HDL-C levels. Although rosiglitazone showed favorable effects on oxidant/antioxidant balance and lipid profile, further studies are needed to determine the effect of rosiglitazone on cardiovascular risk factors and cardiovascular morbidity and mortality.
Resumo:
The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.
Resumo:
The allometric scaling relationship observed between metabolic rate (MR) and species body mass can be partially explained by differences in cellular MR (Porter & Brand, 1995). Here, I studied cultured cell lines derived from ten mammalian species to determine whether cells propagated in an identical environment exhibited MR scaling. Oxidative and anaerobic metabolic parameters did not scale significantly with donor body mass in cultured cells, indicating the absence of an intrinsic MR setpoint. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms (West et al., 2002). As such cells were cultured under a variety of physiologically relevant oxygen tensions to investigate the effect of oxygen on cellular metabolic rates. Exposure to higher medium oxygen tensions resulted in increased metabolic rates in all cells. Higher MRs have the potential to produce more reactive oxygen species (ROS) which could cause genomic instability and thus reduced lifespan. Longer-lived species are more resistant to oxidative stress (Kapahi et al, 1999), which may be due to greater antioxidant and/or DNA repair capacities. This hypothesis was addressed by culturing primary dermal fibroblasts from eight mammalian species ranging in maximum lifespan from 5 to 120 years. Only the antioxidant manganese superoxide dismutases (MnSOD) positively scaled with species lifespan (p<0.01). Oxidative damage to DNA is primarily repaired by the base excision repair (BER) pathway. BER enzyme activities showed either no correlation or as in the case of polymerase p correlated, negatively with donor species (p<0.01 ). Typically, mammalian cells are cultured in a 20% O2 (atmospheric) environment, which is several-fold higher than cells experience in vivo. Therefore, the secondary aim of this study was to determine the effect of culturing mammalian cells at a more physiological oxygen tension (3%) on BER, and antioxidant, enzyme activities. Consistently, standard culture conditions induce higher antioxidant and DNA ba.se excision repair activities than are present under a more physiological oxygen concentration. Therefore, standard culture conditions are inappropriate for studies of oxidative stress-induced activities and species differences in fibroblast DNA BER repair capacities may represent differences in ability to respond to oxidative stress. An interesting outcome firom this study was that some inherent cellular properties are maintained in culture (i.e. stress responses) while others are not (i.e. MR).