999 resultados para black hole physics
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Física - IFT
Resumo:
We construct and analyze thermal spinning giant gravitons in type II/M-theory based on spherically wrapped black branes, using the method of thermal probe branes originating from the blackfold approach. These solutions generalize in different directions recent work in which the case of thermal (non-spinning) D3-brane giant gravitons was considered, and reveal a rich phase structure with various new properties. First of all, we extend the construction to M-theory, by constructing thermal giant graviton solutions using spherically wrapped M2- and M5-branes. More importantly, we switch on new quantum numbers, namely internal spins on the sphere, which are not present in the usual extremal limit for which the brane world volume stress tensor is Lorentz invariant. We examine the effect of this new type of excitation and in particular analyze the physical quantities in various regimes, including that of small temperatures as well as low/high spin. As a byproduct we find new stationary dipole-charged black hole solutions in AdS m × S n backgrounds of type II/M-theory. We finally show, via a double scaling extremal limit, that our spinning thermal giant graviton solutions lead to a novel null-wave zero-temperature giant graviton solution with a BPS spectrum, which does not have an analogue in terms of the conventional weakly coupled world volume theory.
Resumo:
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Resumo:
We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.
Resumo:
Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4–16 times the mass of the sun, whereas the latter are “supermassive black holes” with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong.
Resumo:
Context. Galaxies, which often contain ionised gas, sometimes also exhibit a so-called low-ionisation nuclear emission line region (LINER). For 30 years, this was attributed to a central mass-accreting supermassive black hole (more commonly known as active galactic nucleus, AGN) of low luminosity, making LINER galaxies the largest AGN sub-population, which dominate in numbers over higher luminosity Seyfert galaxies and quasars. This, however, poses a serious problem. While the inferred energy balance is plausible, many LINERs clearly do not contain any other independent signatures of an AGN. Aims. Using integral field spectroscopic data from the CALIFA survey, we compare the observed radial surface brightness profiles with what is expected from illumination by an AGN. Methods. Essential for this analysis is a proper extraction of emission lines, especially weak lines, such as Balmer H beta lines, which are superposed on an absorption trough. To accomplish this, we use the GANDALF code, which simultaneously fits the underlying stellar continuum and emission lines. Results. For 48 galaxies with LINER-like emission, we show that the radial emission-line surface brightness profiles are inconsistent with ionisation by a central point-source and hence cannot be due to an AGN alone. Conclusions. The most probable explanation for the excess LINER-like emission is ionisation by evolved stars during the short but very hot and energetic phase known as post-AGB. This leads us to an entirely new interpretation. Post-AGB stars are ubiquitous and their ionising effect should be potentially observable in every galaxy with the gas present and with stars older than ~1 Gyr unless a stronger radiation field from young hot stars or an AGN outshines them. This means that galaxies with LINER-like emission are not a class defined by a property but rather by the absence of a property. It also explains why LINER emission is observed mostly in massive galaxies with old stars and little star formation.
Resumo:
The discovery almost three decades ago of non-nuclear, point-like X-ray sources with X-ray luminosities LX ≥ 3 × 1039 erg s−1 revolutionized the physics of black hole accretion. If of stellar origin, such Ultraluminous X-ray sources (ULXs) would have to accrete at super-Eddington rates in order to reach the observed high X-ray luminosities. Alternatively, ULXs could host sub-Eddington accreting intermediate-mass black holes, which are the long-time sought missing link between stellar and supermassive black holes and the possible seeds of the supermassive black holes that formed in the early Universe. The nature of ULXs can be better investigated in those cases for which a radio counterpart is detected. Radio observations of ULXs have revealed a wide variety of morphologies and source types, from compact and extended jets to radio nebulae and transient behaviours, providing the best observational evidence for the presence of an intermediate-mass black hole in some of them. The high sensitivity of the SKA will allow us to study the faintest ULX radio counterparts in the Local Universe as well as to detect new sources at much larger distances. It will thus perform a leap step in understanding ULXs, their accretion physics, and their possible role as seed black holes in supermassive black hole and galaxy growth.
Resumo:
We propose an experiment in which the phonon excitation of ion(s) in a trap, with a trap frequency exponentially modulated at rate kappa, exhibits a thermal spectrum with an Unruh temperature given by k(B)T=h kappa. We discuss the similarities of this experiment to the response of detectors in a de Sitter universe and the usual Unruh effect for uniformly accelerated detectors. We demonstrate a new Unruh effect for detectors that respond to antinormally ordered moments using the ion's first blue sideband transition.
Resumo:
We study the stellar and star formation properties of the host galaxies of 58 X-ray-selected AGNs in the GOODS portion of the Chandra Deep Field South (CDF-S) region at z ~ 0.5-1.4. The AGNs are selected such that their rest-frame UV to near-infrared spectral energy distributions (SEDs) are dominated by stellar emission; i.e., they show a prominent 1.6 μm bump, thus minimizing the AGN emission "contamination." This AGN population comprises approximately 50% of the X-ray-selected AGNs at these redshifts. We find that AGNs reside in the most massive galaxies at the redshifts probed here. Their characteristic stellar masses (M_* ~ 7.8 × 10^10 and M_* ~ 1.2 × 10^11 M_☉ at median redshifts of 0.67 and 1.07, respectively) appear to be representative of the X-ray-selected AGN population at these redshifts and are intermediate between those of local type 2 AGNs and high-redshift (z ~ 2) AGNs. The inferred black hole masses (M_BH ~ 2 × 10^8 M_☉) of typical AGNs are similar to those of optically identified quasars at similar redshifts. Since the AGNs in our sample are much less luminous (L_2–10 keV < 10^44 erg s^−1) than quasars, typical AGNs have low Eddington ratios (η ~ 0.01-0.001). This suggests that, at least at intermediate redshifts, the cosmic AGN "downsizing" is due to both a decrease in the characteristic stellar mass of typical host galaxies and less efficient accretion. Finally, there is no strong evidence in AGN host galaxies for either highly suppressed star formation (expected if AGNs played a role in quenching star formation) or elevated star formation when compared to mass-selected (i.e., IRAC-selected) galaxies of similar stellar masses and redshifts.
Resumo:
The astrophysical context in which this thesis project lies concerns the comprehension of the mutual interaction between the accretion onto a Super Massive Black Hole (SMBH) and the Star Formation (SF), that take place in the host galaxy. This is one of the key topic of the modern extragalactic astrophysical research. Indeed, it is widely accepted that to understand the physics of a galaxy, the contribution of a possible central AGN must be taken into account. The aim of this thesis is the study of the physical processes of the nearby Seyfert galaxy NGC 34. This source was selected because of the wide collection of multiwavelength data available in the literature. In addition, recently, it has been observed with the Atacama Large Submillimeter/Millimeter Array (ALMA) in Band 9. This project is divided in two main parts: first of all, we reduced and analyzed the ALMA data, obtaining the continuum and CO(6-5) maps; then, we looked for a coherent explaination of NGC 34 physical characteristics. In particular, we focused on the ISM physics, in order to understand its properties in terms of density, chemical composition and dominant radiation field (SF or accretion). This work has been done through the analysis of the spectral distribution of several CO transitions as a function of the transition number (CO SLED), obtained joining the CO(6-5) line with other transitions available in the literature. More precisely, the observed CO SLED has been compared with ISM models, including Photo-Dissociation Regions (PDRs) and X-ray-Dominated Regions (XDRs). These models have been obtained through the state-of-the-art photoionization code CLOUDY. Along with the observed CO SLED, we have taken into account other physical properties of NGC 34, such as the Star Formation Rate (SFR), the gas mass and the X-ray luminosity.
Resumo:
The work presented in my thesis addresses the two cornerstones of modern astronomy: Observation and Instrumentation. Part I deals with the observation of two nearby active galaxies, the Seyfert 2 galaxy NGC 1433 and the Seyfert 1 galaxy NGC 1566, both at a distance of $\sim10$ Mpc, which are part of the Nuclei of Galaxies (NUGA) sample. It is well established that every galaxy harbors a super massive black hole (SMBH) at its center. Furthermore, there seems to be a fundamental correlation between the stellar bulge and SMBH masses. Simulations show that massive feedback, e.g., powerful outflows, in Quasi Stellar Objects (QSOs) has an impact on the mutual growth of bulge and SMBH. Nearby galaxies follow this relation but accrete mass at much lower rates. This gives rise to the following questions: Which mechanisms allow feeding of nearby Active Galactic Nuclei (AGN)? Is this feeding triggered by events, e.g., star formation, nuclear spirals, outflows, on $\sim500$ pc scales around the AGN? Does feedback on these scales play a role in quenching the feeding process? Does it have an effect on the star formation close to the nucleus? To answer these questions I have carried out observations with the Spectrograph for INtegral Field Observation in the Near Infrared (SINFONI) at the Very Large Telescope (VLT) situated on Cerro Paranal in Chile. I have reduced and analyzed the recorded data, which contain spatial and spectral information in the H-band ($1.45 \mic-1.85 \mic$) and K-band ($1.95 \mic-2.45 \mic$) on the central $10\arcsec\times10\arcsec$ of the observed galaxies. Additionally, Atacama Large Millimeter/Sub-millimeter Array (ALMA) data at $350$ GHz ($\sim0.87$ mm) as well as optical high resolution Hubble Space Telescope (HST) images are used for the analysis. For NGC 1433 I deduce from comparison of the distributions of gas, dust, and intensity of highly ionized emission lines that the galaxy center lies $\sim70$ pc north-northwest of the prior estimate. A velocity gradient is observed at the new center, which I interpret as a bipolar outflow, a circum nuclear disk, or a combination of both. At least one dust and gas arm leads from a $r\sim200$ pc ring towards the nucleus and might feed the SMBH. Two bright warm H$_2$ gas spots are detected that indicate hidden star formation or a spiral arm-arm interaction. From the stellar velocity dispersion (SVD) I estimate a SMBH mass of $\sim1.74\times10^7$ \msol. For NGC 1566 I observe a nuclear gas disk of $\sim150$ pc in radius with a spiral structure. I estimate the total mass of this disk to be $\sim5.4\times10^7$ \msol. What mechanisms excite the gas in the disk is not clear. Neither can the existence of outflows be proven nor is star formation detected over the whole disk. On one side of the spiral structure I detect a star forming region with an estimated star formation rate of $\sim2.6\times10^{-3}$ \msol\ yr$^{-1}$. From broad Br$\gamma$ emission and SVD I estimate a mean SMBH mass of $\sim5.3\times10^6$ \msol\ with an Eddington ratio of $\sim2\times10^{-3}$. Part II deals with the final tests of the Fringe and Flexure Tracker (FFTS) for LBT INterferometric Camera and the NIR/Visible Adaptive iNterferometer for Astronomy (LINC-NIRVANA) at the Large Binocular Telescope (LBT) in Arizona, USA, which I conducted. The FFTS is the subsystem that combines the two separate beams of the LBT and enables near-infrared interferometry with a significantly large field of view. The FFTS has a cryogenic system and an ambient temperature system which are separated by the baffle system. I redesigned this baffle to guarantee the functionality of the system after the final tests in the Cologne cryostat. The redesign did not affect any scientific performance of LINC-NIRVANA. I show in the final cooldown tests that the baffle fulfills the temperature requirement and stays $<110$ K whereas the moving stages in the ambient system stay $>273$ K, which was not given for the old baffle design. Additionally, I test the tilting flexure of the whole FFTS and show that accurate positioning of the detector and the tracking during observation can be guaranteed.
Resumo:
This thesis considers non-perturbative methods in quantum field theory with applications to gravity and cosmology. In particular, there are chapters on black hole holography, inflationary model building, and the conformal bootstrap.