153 resultados para bioethanol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive application of vinasse, a subproduct from sugar cane plantations for bioethanol production, is currently taking place as a source of nutrients that forms part of agricultural management in different agroclimatic regions. Liquid vinasse composition is characterised by high variability of organic compounds and major ions, acid pH (4.7), high TDS concentration (117,416–599,400 mg L− 1) and elevated EC (14,350–64,099 μS cm− 1). A large-scale sugar cane field application is taking place in Valle del Cauca (Colombia), where monitoring of soil, unsaturated zone and the aquifer underneath has been made since 2006 to evaluate possible impacts on three experimental plots. For this assessment, monitoring wells and piezometers were installed to determine groundwater flow and water samples were collected for chemical analysis. In the unsaturated zone, tensiometers were installed at different depths to determine flow patterns, while suction lysimeters were used for water sample chemical determinations. The findings show that in the sandy loam plot (Hacienda Real), the unsaturated zone is characterised by low water retention, showing a high transport capacity, while the other two plots of silty composition presented temporal saturation due to La Niña event (2010–2011). The strong La Niña effect on aquifer recharge which would dilute the infiltrated water during the monitoring period and, on the other hand dissolution of possible precipitated salts bringing them back into solution may occur. A slight increase in the concentration of major ions was observed in groundwater (~ 5% of TDS), which can be attributed to a combination of factors: vinasse dilution produced by water input and hydrochemical processes along with nutrient removal produced by sugar cane uptake. This fact may make the aquifer vulnerable to contamination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like other regions of the world, the EU is developing biofuels in the transport sector to reduce oil consumption and mitigate climate change. To promote them, it has adopted favourable legislation since the 2000s. In 2009 it even decided to oblige each Member State to ensure that by 2020 the share of energy coming from renewable sources reached at least 10% of their final consumption of energy in the transport sector. Biofuels are considered the main instrument to reach that percentage since the development of other alternatives (such as hydrogen and electricity) will take much longer than expected. Meanwhile, these various legislative initiatives have driven the production and consumption of biofuels in the EU. Biofuels accounted for 4.7% of EU transport fuel consumption in 2011. They have also led to trade and investment in biofuels on a global scale. This large-scale expansion of biofuels has, however, revealed numerous negative impacts. These stem from the fact that first-generation biofuels (i.e., those produced from food crops), of which the most important types are biodiesel and bioethanol, are used almost exclusively to meet the EU’s renewable 10% target in transport. Their negative impacts are: socioeconomic (food price rises), legal (land-grabbing), environmental (for instance, water stress and water pollution; soil erosion; reduction of biodiversity), climatic (direct and indirect land-use effects resulting in more greenhouse gas emissions) and public finance issues (subsidies and tax relief). The extent of such negative impacts depends on how biofuel feedstocks are produced and processed, the scale of production, and in particular, how they influence direct land use change (DLUC) and indirect land use change (ILUC) and the international trade. These negative impacts have thus provoked mounting debates in recent years, with a particular focus on ILUC. They have forced the EU to re-examine how it deals with biofuels and submit amendments to update its legislation. So far, the EU legislation foresees that only sustainable biofuels (produced in the EU or imported) can be used to meet the 10% target and receive public support; and to that end, mandatory sustainability criteria have been defined. Yet they have a huge flaw. Their measurement of greenhouse gas savings from biofuels does not take into account greenhouse gas emissions resulting from ILUC, which represent a major problem. The Energy Council of June 2014 agreed to set a limit on the extent to which firstgeneration biofuels can count towards the 10% target. But this limit appears to be less stringent than the ones made previously by the European Commission and the European Parliament. It also agreed to introduce incentives for the use of advanced (second- and third-generation) biofuels which would be allowed to count double towards the 10% target. But this again appears extremely modest by comparison with what was previously proposed. Finally, the approach chosen to take into account the greenhouse gas emissions due to ILUC appears more than cautious. The Energy Council agreed that the European Commission will carry out a reporting of ILUC emissions by using provisional estimated factors. A review clause will permit the later adjustment of these ILUC factors. With such legislative orientations made by the Energy Council, one cannot consider yet that there is a major shift in the EU biofuels policy. Bolder changes would have probably meant risking the collapse of the high-emission conventional biodiesel industry which currently makes up the majority of Europe’s biofuel production. The interests of EU farmers would have also been affected. There is nevertheless a tension between these legislative orientations and the new Commission’s proposals beyond 2020. In any case, many uncertainties remain on this issue. As long as solutions have not been found to minimize the important collateral damages provoked by the first generation biofuels, more scientific studies and caution are needed. Meanwhile, it would be wise to improve alternative paths towards a sustainable transport sector, i.e., stringent emission and energy standards for all vehicles, better public transport systems, automobiles that run on renewable energy other than biofuels, or other alternatives beyond the present imagination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sugarcane is a monocot plant grown in tropical and subtropical regions, with Brazil being the largest producer. Despite its economic importance, little is known about the molecular flowering process in sugarcane. This physiological process can promote a loss up to 60% in sugar or bioethanol. Thus, this work had as objective characterize a HINT1 homologous gene previously identified in subtractive libraries of flowering. Genomic analysis of gene and promoter region structure allowed the observation that there are at least two distinct genes homologous to HINT on sugarcane. Bioinformatics analyses showed the conservation of the characteristic protein domain of HIT superfamily and indicate a phylogenetic relationship associated to cell location. Moreover, a possible relation with the SBTILISIN-like protein family through the information available in interatomas was observed. This suggests that the HINT gene of sugarcane can be related to plant development, there are several possibilities of interactions in the regulation of floral induction process, because the sequences present in regulatory regions indicate that differential expression of HINT was related to with climatic factors in the Northeast region of Brazil as well as to biotic stress and phytohormones. Furthermore, the sugarcane phenotypes indicate that the influence of HINT may happen due to product accumulation of its enzymatic activity. For these characteristics this gene can be used as a marker in the selection of new varieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O bioetanol constitui uma alternativa renovável aos combustíveis fósseis. Contudo, o bioetanol de primeira geração, produzido a partir de matérias-primas alimentares, desencadeou sérios problemas económicos e sociais, pelo que é fundamental encontrar estratégias que permitam a viabilidade comercial do bioetanol de segunda geração, produzido a partir de matérias-primas lenho-celulósicas. O licor de cozimento ao sulfito ácido de árvores folhosas (HSSL) é um subproduto da indústria papeleira que, devido ao seu elevado conteúdo em açúcares, pode ser utilizado como substrato para a produção de bioetanol de segunda geração. No entanto, a maior fração dos açúcares do HSSL é composta por pentoses. Por isso, a fermentação do HSSL é realizada pela levedura Scheffersomyces stipitis, pois esta é capaz de fermentar tanto as hexoses como as pentoses. Todavia, a S. stipitis só produz etanol sob condições microaerófilas, pelo que o maior desafio da produção de bioetanol por S. stipitis reside no estabelecimento das condições ótimas de arejamento. Este trabalho teve assim por objetivo estabelecer uma estratégia de arejamento que permita a eficiente produção de bioetanol a partir de HSSL por S. stipitis C4, a qual é uma estirpe adaptada a este substrato. Deste modo, foram realizados ensaios em Erlenmeyer, de modo a caracterizar o crescimento da S. stipitis C4, e ensaios em biorreator, com vista a estudar a produção de etanol por S. stipitis C4 em duas estratégias de arejamento diferentes. Na primeira estratégia foi usado apenas um único estágio de arejamento, com controlo da tensão de oxigénio dissolvido, DOT (%), e na segunda estratégia foram usados dois estágios de arejamento, com controlo da DOT no primeiro estágio e com restrição de oxigénio no segundo estágio. Nos ensaios em Erlenmeyer com HSSL o crescimento da S. stipitis C4 foi completamente inibido. Por sua vez, nos ensaios em biorreator com um único estágio de arejamento o controlo da DOT não permitiu a produção de etanol. No entanto, nos ensaios com dois estágios de arejamento em meio sintético foi possível produzir etanol de forma eficiente. Nesta estratégia, a utilização de um maior valor de DOT no primeiro estágio de arejamento permitiu aumentar a taxa específica de crescimento máxima e o rendimento em biomassa do primeiro estágio. Para além disso, a utilização de um maior valor de DOT no primeiro estágio também permitiu aumentar a produtividade em etanol durante o segundo estágio de arejamento. Por sua vez, no segundo estágio de arejamento verificou-se que a restrição de oxigénio evitou a reassimilação de etanol pela S. stipitis C4. Deste modo, os melhores resultados para a produção de etanol foram obtidos com controlo da DOT a 50% durante o primeiro estágio e com 0 mLAr.min-1 e 250 rpm durante o segundo estágio de arejamento. A aplicação desta estratégia de arejamento a 60% HSSL/40% meio sintético permitiu obter, no primeiro estágio de arejamento, uma taxa específica de crescimento máxima de 0,17 h-1, o que demonstra que a elevada disponibilidade de oxigénio durante o primeiro estágio aumenta a tolerância da S. stipitis C4 aos inibidores. Para além disso, a taxa volumétrica de produção de etanol e o rendimento em etanol de toda a fermentação foi de respetivamente de 0,03 g.L-1.h-1 e 0,38 g.g-1. Assim, a elevada eficiência de conversão dos açúcares em etanol (74,4%) demostra que a fermentação com dois estágios de arejamento constitui uma estratégia promissora para a produção de bioetanol de segunda geração a partir de HSSL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of macroalgae (seaweed) as a potential source of biofuels has attracted considerable worldwide interest. Since brown algae, especially the giant kelp, grow very rapidly and contain considerable amounts of polysaccharides, coupled with low lignin content, they represent attractive candidates for bioconversion to ethanol through yeast fermentation processes. In the current study, powdered dried seaweeds (Ascophylum nodosum and Laminaria digitata) were pre-treated with dilute sulphuric acid and hydrolysed with commercially available enzymes to liberate fermentable sugars. Higher sugar concentrations were obtained from L. digitata compared with A. nodosum with glucose and rhamnose being the predominant sugars, respectively, liberated from these seaweeds. Fermentation of the resultant seaweed sugars was performed using two non-conventional yeast strains: Scheffersomyces (Pichia) stipitis and Kluyveromyces marxianus based on their abilities to utilise a wide range of sugars. Although the yields of ethanol were quite low (at around 6 g/L), macroalgal ethanol production was slightly higher using K. marxianus compared with S. stipitis. The results obtained demonstrate the feasibility of obtaining ethanol from brown algae using relatively straightforward bioprocess technology, together with non-conventional yeasts. Conversion efficiency of these non-conventional yeasts could be maximised by operating the fermentation process based on the physiological requirements of the yeasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microalgae have a wide range of application fields, from food to fuels, to pharmaceuticals & fine chemicals, aquaculture and environmental bioremediation, among others. Spirulina and Chlorella have been used as food sources since ancient times, due to their high and balanced nutritional value. Our research group in Lisbon has developed a range of food products (emulsions, gelled desserts, biscuits and pastas) enriched with freshwater and marine microalgae (Spirulina, Chlorella, Haematococcus, Isochrysis and Diacronema). The developed products presented attractive and stable colours, high resistance to oxidation and enhanced rheological properties. Some of these products will be prepared at the Post-Congress Course “Functional Foods Development” at the University of Antofagasta. More recently, a great interest has arisen on using microalgae for biofuel production. The same group has also been exploring several marine and freshwater species for biofuel production (e.g., biodiesel, bioethanol, biohydrogen and biomethane) within a biorefinery approach, in order to obtain high and low-value co-products using integral biomass maximizing the energy revenue. Namely, supercritical fluid extraction of Nannochloropsis sp. allowed the recovery of valuable carotenoids and lipids, prior to bioH2 production through dark fermentation of the residual biomass. Also, Scenedesmus obliquus residues after sugars (for bioethanol) and lipids (for biodiesel) extraction has been anaerobically digested attaining high biomethane yields. Regarding sustainability issues, the current trend of our group is now focused on using liquid effluents and high CO2 levels for low cost microalgae growth, contributing to a lower water demand, primary energy consumption and global warming potential by reducing the need for potable water and fertilizers (P, N) and increasing CO2 mitigation. Microalgae biomass has been successfully used for urban wastewater treatment with subsequent bioH2 production, in a biorefinery approach. Presently, ammonium-rich raw effluents from piggeries and poultry industry are being effectively used for microalgae growth avoiding any pre-treatment step.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A maior parte da energia hoje consumida no mundo é derivada de fontes como petróleo, carvão e gás natural. Essas fontes, no entanto, não são renováveis e podem se esgotar em data futura. Nas últimas décadas, as fontes renováveis de combustíveis de base biológica, em especial o bioetanol, têm sido consideradas como alternativa à matriz energética convencional. Porém, existe a necessidade de ampliação da oferta de matérias-primas para produção de etanol, sem pressionar a área plantada para produção de alimentos, o que tem levado empresas e países a investirem em pesquisas para maior utilização de outras matériasprimas. As microalgas surgem como uma das alternativas mais promissoras para a produção de bioetanol, sendo que modificações nas condições de cultivo podem propiciar incremento na concentração de carboidratos destas. Neste contexto, o objetivo deste trabalho foi avaliar a influência da concentração de nutrientes na concentração de carboidratos de microalgas e produzir bioetanol a partir destas. Avaliou-se a síntese de carboidratos das microalgas Chlorella homosphaera e Spirulina platensis LEB 52 em cultivos mixotróficos com diferentes concentrações do componente nitrogenado e cloreto de sódio adicionados aos meios de cultivo. Para a microalga Chlorella minutissima, foram avaliados os efeitos do meio de cultivo e das concentrações dos componentes nitrogenado e fosfatados utilizados no meio de cultivo da microalga sobre a concentração de carboidratos desta. Foram realizadas fermentações alcoólicas utilizando como substrato biomassa das microalgas Chlorella pyrenoidosa e Spirulina sp. LEB 18 acrescidos de glicose e sacarose. Para a microalga Chlorella homosphaera, a maior produtividade em carboidratos foi obtida nos ensaios realizados com a maior concentração de KNO3 com menor concentração de NaCl e menor concentração de KNO3 com maior concentração de NaCl (0,014±0,001 g.L-1 .d-1 e 0,015±0,002 g.L-1 .d-1 , respectivamente). A maior produtividade em carboidratos nos cultivos de Spirulina platensis LEB 52 (0,116±0,002 g.L-1 .d-1 ) foi verificada no experimento no qual a microalga foi cultivada nas menores concentrações de NaNO3 e NaCl. A microalga Spirulina platensis LEB 52 apresentou maior produtividade em carboidratos quando comparada à microalga Chlorella homosphaera. A microalga Chlorella minutissima cultivada em meio Basal, com adição de 0,125 g.L-1 do componente nitrogenado (KNO3) e sem adição dos componentes fosfatados (K2HPO4 e KH2PO4) apresentou a maior produtividade em carboidratos nos cultivos (0,030±0,002 g.L-1 .d-1 ). O ensaio com biomassa de Spirulina sp. LEB 18 com adição de glicose apresentou eficiência superior na formação de etanol e produtividade em etanol (68,487±2,592% e 1,182±0,051g.L-1 .h-1 , respectivamente).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: A study of the correlation between the particle size of lignocellulosic substrates and ultrasound pretreatment on the efficiency of further enzymatic hydrolysis and fermentation to ethanol. Results: Themaximumconcentrations of glucose and, to a lesser extent, di- and trisaccharideswere obtained in a series of experiments with 48-h enzymatic hydrolysis of pine rawmaterials ground at 380–400 rpm for 30min. The highest glucose yield was observed at the end of the hydrolysis with a cellulase dosage of 10 mg of protein (204 ± 21 units CMCase per g of sawdust). The greatest enzymatic hydrolysis efficiency was observed in a sample that combined two-stage grinding at 400 rpm with ultrasonic treatment for 5–10 min at a power of 10 W per kg of sawdust. The glucose yield in this case (35.5 g glucose l−1) increased twofold compared to ground substrate without further preparation. Conclusions: Using a mechanical two-stage grinding of lignocellulosic raw materials with ultrasonication increases the efficiency of subsequent enzymatic hydrolysis and fermentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignocellulosic biomass is the most abundant renewable source of energy that has been widely explored as second-generation biofuel feedstock. Despite more than four decades of research, the process of ethanol production from lignocellulosic (LC) biomass remains economically unfeasible. This is due to the high cost of enzymes, end-product inhibition of enzymes, and the need for cost-intensive inputs associated with a separate hydrolysis and fermentation (SHF) process. Thermotolerant yeast strains that can undergo fermentation at temperatures above 40°C are suitable alternatives for developing the simultaneous saccharification and fermentation (SSF) process to overcome the limitations of SHF. This review describes the various approaches to screen and develop thermotolerant yeasts via genetic and metabolic engineering. The advantages and limitations of SSF at high temperatures are also discussed. A critical insight into the effect of high temperatures on yeast morphology and physiology is also included. This can improve our understanding of the development of thermotolerant yeast amenable to the SSF process to make LC ethanol production commercially viable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Au Canada, près de 80% des émissions totales, soit 692 Mt eq. CO[indice inférieur 2], des gaz à effet de serre (GES) sont produits par les émissions de dioxyde de carbone (CO[indice inférieur 2]) provenant de l’utilisation de matières fossiles non renouvelables. Après la Conférence des Nations Unies sur les changements climatiques, COP21 (Paris, France), plusieurs pays ont pour objectif de réduire leurs émissions de GES. Dans cette optique, les microalgues pourraient être utilisées pour capter le CO[indice inférieur 2] industriel et le transformer en biomasse composée principalement de lipides, de glucides et de protéines. De plus, la culture des microalgues n’utilise pas de terre arable contrairement à plusieurs plantes oléagineuses destinées à la production de biocarburants. Bien que les microalgues puissent être transformées en plusieurs biocarburants tels le bioéthanol (notamment par fermentation des glucides) ou le biométhane (par digestion anaérobie), la transformation des lipides en biodiesel pourrait permettre de réduire la consommation de diesel produit à partir de pétrole. Cependant, les coûts reliés à la production de biodiesel à partir de microalgues demeurent élevés pour une commercialisation à court terme en partie parce que les microalgues sont cultivées en phase aqueuse contrairement à plusieurs plantes oléagineuses, ce qui augmente le coût de récolte de la biomasse et de l’extraction des lipides. Malgré le fait que plusieurs techniques de récupération des lipides des microalgues n’utilisant pas de solvant organique sont mentionnées dans la littérature scientifique, la plupart des méthodes testées en laboratoire utilisent généralement des solvants organiques. Les lipides extraits peuvent être transestérifiés en biodiesel en présence d’un alcool tel que le méthanol et d’un catalyseur (catalyses homogène ou hétérogène). Pour la commercialisation du biodiesel à partir de microalgues, le respect des normes ASTM en vigueur est un point essentiel. Lors des essais en laboratoire, il a été démontré que l’extraction des lipides en phase aqueuse était possible afin d’obtenir un rendement maximal en lipides de 36% (m/m, base sèche) en utilisant un prétraitement consistant en une ébullition de la phase aqueuse contenant les microalgues et une extraction par des solvants organiques. Pour l’estérification, en utilisant une résine échangeuse de cations (Amberlyst-15), une conversion des acides gras libres de 84% a été obtenue à partir des lipides de la microalgue Chlorella protothecoïdes dans les conditions suivantes : température : 120°C, pression autogène, temps de réaction : 60 min, ratio méthanol/lipides: 0.57 mL/g et 2.5% (m/m) Amberlyst-15 par rapport aux lipides. En utilisant ces conditions avec une catalyse homogène (acide sulfurique) et une seconde étape alcaline avec de l’hydroxyde de potassium (température : 60°C ; temps de réaction : 22.2 min; ratio catalyseur microalgue : 2.48% (m/m); ratio méthanol par rapport aux lipides des microalgues : 31.4%), un rendement en esters méthyliques d’acides gras (EMAG) de 33% (g EMAG/g lipides) a été obtenu à partir des lipides de la microalgue Scenedesmus Obliquus. Les résultats démontrent que du biodiesel peut être produit à partir de microalgues. Cependant, basé sur les présents résultats, il sera necessaire de mener d’autre recherche pour prouver que les microalgues sont une matière première d’avenir pour la production de biodiesel.