878 resultados para bio-economics
Resumo:
This article discusses the potential of bio-dimethyl ether (DME) as a promising fuel for India in the transportation sector where a majority of imported petroleum in the form of diesel is used. Specifically, the suitability of DME in terms of its properties vis-a-vis those of diesel, ability to liquefy DME at low pressures similar to liquefied petroleum gas (LPG), and ease of production from renewable feedstock (biomass), and most importantly, very low emissions including near-zero soot levels are some of the features that make it an attractive option. A detailed review presents the state-of-the-art on various aspects such as estimates of potential bio-DME production, methods of synthesis of bio-DME, important physicochemical properties, fuel-injection system-related concerns (both conventional and common-rail system), fuel spray characteristics which have a direct bearing on the engine performance, and finally, exhaust emissions. Future research directions covering all aspects from production to utilization are summarized (C) 2010 American Institute of Physics. doi:10.1063/1.3489529]
Resumo:
Silver nanoparticles are being extensively studied due to their widespread applications and unique properties. In the present study, the growth kinetics of silver nanoparticles as synthesized on reduction of silver nitrate solution by aqueous extract of Azadirachta indica leaves was investigated. The formation of silver nanoparticles was preliminarily monitored by measuring the absorption maxima at different time intervals after adding the reducing agent to the silver salt solution (0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 h). At different time points characterization studies were conducted using X-ray diffraction studies, FT-IR techniques, zeta potential studies and transmission electron microscopy. The total available silver in the reaction medium was determined at different durations using ICP-OES. The changes in reduction potential in the medium were also monitored using potentiometric analysis. The results confirm a definite change in the medium pertaining to formation of the stable nanoparticles after 2 h, and a significant increase in the agglomeration tendency after 4 h of interaction. The growth kinetic data of the nanoparticles till 3.5 h was found to fit the LSW model confirming diffusion limited growth. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
There is a need to understand the carbon (C) sequestration potential of the forestry option and its financial implications for each country.In India the C emissions from deforestation are estimated to be nearly offset by C sequestration in forests under succession and tree plantations. India has nearly succeeded in stabilizing the area under forests and has adequate forest conservation strategies. Biomass demands for softwood, hardwood and firewood are estimated to double or treble by the year 2020. A set of forestry options were developed to meet the projected biomass needs, and keeping in mind the features of land categories available, three scenarios were developed: potential; demand-driven; and programme-driven scenarios. Adoption of the demand-driven scenario, targeted at meeting the projected biomass needs, is estimated to sequester 78 Mt of C annually after accounting for all emissions resulting from clearfelling and end use of biomass. The demand-driven scenario is estimated to offset 50% of national C emission at 1990 level. The cost per t of C sequestered for forestry options is lower than the energy options considered. The annual investment required for implementing the demand-driven scenario is estimated to be US$ 2.1 billion for six years and is shown to be feasible. Among forestry options, the ranking based on investment cost per t of C sequestered from least cost to highest cost is; natural regeneration-agro-forestry-enhanced natural regeneration (< US$ 2.5/t C)-timber-community-softwood forestry (US$ 3.3 to 7.3 per t of C).
Resumo:
A new class of bio-composite polymer electrolyte membranes comprising chitosan (CS) and certain biomolecules in particular, plant hormones such as 3-indole acetic acid (IAA), 4-chlorophenoxy acetic acid (CAA) and 1-naphthalene acetic acid (NAA) are explored to realize proton-conducting bio-composite membranes for application in direct methanol fuel cells (DMFCs). The sorption capability, proton conductivity and ion-exchange capacity of the membranes are characterized in conjunction with their thermal and mechanical behaviour. A novel approach to measure the permeability of the membranes to both water and methanol is also reported, employing NMR imaging and volume localized NMR spectroscopy, using a two compartment permeability cell. A DMFC using CS-IAA composite membrane, operating with 2M aqueous methanol and air at 70 degrees C delivers a peak power density of 25 mW/cm(2) at a load current density of 150 mA/cm(2). The study opens up the use of bio-compatible membranes in polymer-electrolyte-membrane fuel cells. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.030111jes] All rights reserved.
Resumo:
We report one-pot hydrothermal synthesis of nearly mono-disperse 3-mercaptopropionic acid capped water-soluble cadmium telluride (CdTe) quantum dots (QDs) using an air stable Te source. The optical and electrical characteristics were also studied here. It was shown that the hydrothermal synthesis could be tuned to synthesize nano structures of uniform size close to nanometers. The emissions of the CdTe QDs thus synthesized were in the range of 500-700 nm by varying the duration of synthesis. The full width at half maximum (FWHM) of the emission peaks is relatively narrow (40-90 nm), which indicates a nearly uniform distribution of QD size. The structural and optical properties of the QDs were characterized by transmission electron microscopy (TEM), photoluminescence (PL) and Ultraviolet-visible (UV-Vis) spectroscopy. The photoluminescence quenching of CdTe QDs in the presence of L-cysteine and DNA confirms its biocompatibility and its utility for biosensing applications. The room temperature current-voltage characteristics of QD film on ITO coated glass substrate show an electrically induced switching between states with high and low conductivities. The phenomenon is explained on the basis of charge confinement in quantum dots. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Abstract | The importance of well-defined inorganic porous nanostructured materials in the context of biotechnological applications such as drug delivery and biomolecular sensing is reviewed here in detail. Under optimized conditions, the confinement of “bio”-relevant molecules such as pharmaceutical drugs, enzymes or proteins inside such inorganic nanostructures may be remarkably beneficial leading to enhanced molecular stability, activity and performance. From the point of view of basic research, molecular confinement inside nanostructures poses several formidable and intriguing problems of statistical mechanics at the mesoscopic scale. The theoretical comprehension of such non-trivial issues will not only aid in the interpretation of observed phenomena but also help in designing better inorganic nanostructured materials for biotechnological applications.
Resumo:
Reduction of carbon emissions is of paramount importance in the context of global warming and climate change. Countries and global companies are now engaged in understanding systematic ways of solving carbon economics problems, aimed ultimately at achieving well defined emission targets. This paper proposes mechanism design as an approach to solving carbon economics problems. The paper first introduces carbon economics issues in the world today and next focuses on carbon economics problems facing global industries. The paper identifies four problems faced by global industries: carbon credit allocation (CCA), carbon credit buying (CCB), carbon credit selling (CCS), and carbon credit exchange (CCE). It is argued that these problems are best addressed as mechanism design problems. The discipline of mechanism design is founded on game theory and is concerned with settings where a social planner faces the problem of aggregating the announced preferences of multiple agents into a collective decision, when the actual preferences are not known publicly. The paper provides an overview of mechanism design and presents the challenges involved in designing mechanisms with desirable properties. To illustrate the application of mechanism design in carbon economics,the paper describes in detail one specific problem, the carbon credit allocation problem.
Resumo:
In recent times computational algorithms inspired by biological processes and evolution are gaining much popularity for solving science and engineering problems. These algorithms are broadly classified into evolutionary computation and swarm intelligence algorithms, which are derived based on the analogy of natural evolution and biological activities. These include genetic algorithms, genetic programming, differential evolution, particle swarm optimization, ant colony optimization, artificial neural networks, etc. The algorithms being random-search techniques, use some heuristics to guide the search towards optimal solution and speed-up the convergence to obtain the global optimal solutions. The bio-inspired methods have several attractive features and advantages compared to conventional optimization solvers. They also facilitate the advantage of simulation and optimization environment simultaneously to solve hard-to-define (in simple expressions), real-world problems. These biologically inspired methods have provided novel ways of problem-solving for practical problems in traffic routing, networking, games, industry, robotics, economics, mechanical, chemical, electrical, civil, water resources and others fields. This article discusses the key features and development of bio-inspired computational algorithms, and their scope for application in science and engineering fields.
Resumo:
This paper presents the work on detailed characterization of effervescent spray of Jatropha and Pongamia pure plant oils. The spray characteristics of these biofuels are compared with those of diesel. Both macroscopic and microscopic spray characteristics at different injection pressures and gas-to-liquid ratio (GLR) have been studied. The particle/droplet imaging analysis (PDIA) technique along with direct imaging methods are used for the purpose of spray characterization. Due to their higher viscosity, pure plant oils showed poor atomization compared to diesel and a blend of diesel and pure plant oil at a given GLR. Pure plant oil sprays showed a lower spray cone angle when compared to diesel and blends at lower GLRs. However, the difference is not significant at higher GLRs. Droplet size measurements at 100 mm downstream of the exit orifice showed reduction in Sauter mean diameter (SMD) diameter with increase in GLR. A radial variation in the SMD is observed for the blend and pure plant oils. Pure oils showed a larger variation when compared to the blend. Spray unsteadiness has been characterized based on the image-to-image variation in the mean droplet diameter and fluctuations in the spray cone angle. Results showed that pure plant oil sprays are more unsteady at lower GLRs when compared to diesel and blend. A critical GLR is identified at which the spray becomes steady. The three regimes of spray operation, namely ``steady spray,'' ``pulsating spray,'' and ``spray and unbroken liquid jet'' are identified in the injection pressure-GLR parameter space for these pure plant oils. Two-phase flow imaging inside the exit orifice shows that for the pure plant oils, the flow is highly transient at low GLRs and the bubbly, slug, and annular two-phase flow regimes are all observed. However, at higher GLRs where the spray is steady, only the annular flow regime is observed.
Resumo:
Cotton is a widely used raw material for textiles but drawbacks regarding their poor mechanical properties often limit their applications as functional materials. The present investigation involved process development for one step coating of cotton with silver nanoparticles (SNP) synthesized using Azadirachta indica and Citrus limon extract to develop functional textiles. Addition of starch to functional textiles led to efficient binding of nanoparticles to fabric and led to drastic decrease in release of silver from fabricated textiles after ten washing cycles enhancing their environment friendliness. Differential scanning calorimetry, scanning electron microscopy, FT-IR analysis and mechanical studies demonstrated efficient binding of nanoparticles to fabric through bio-based processes. The functionalized textiles developed by the bio-based methods showed significant antibacterial activity against E. coli and S. aureus (with 99% microbial reduction). Present work offers a simple procedure for coating SNP using bio-based approaches with promising applications in specialized functions.