952 resultados para bending stiffness
Resumo:
The determination of the characteristics of micro-organisms in clinical specimens is essential for the rapid diagnosis and treatment of infections. A thorough investigation of the nanoscale properties of bacteria can prove to be a fundamental tool. Indeed, in the latest years, the importance of high resolution analysis of the properties of microbial cell surfaces has been increasingly recognized. Among the techniques available to observe at high resolution specific properties of microscopic samples, the Atomic Force Microscope (AFM) is the most widely used instrument capable to perform morphological and mechanical characterizations of living biological systems. Indeed, AFM can routinely study single cells in physiological conditions and can determine their mechanical properties with a nanometric resolution. Such analyses, coupled with high resolution investigation of their morphological properties, are increasingly used to characterize the state of single cells. In this work, we exploit the capabilities and peculiarities of AFM to analyze the mechanical properties of Escherichia coli in order to evidence with a high spatial resolution the mechanical properties of its structure. In particular, we will show that the bacterial membrane is not mechanically uniform, but contains stiffer areas. The force volume investigations presented in this work evidence for the first time the presence and dynamics of such structures. Such information is also coupled with a novel stiffness tomography technique, suggesting the presence of stiffer structures present underneath the membrane layer that could be associated with bacterial nucleoids.
Resumo:
OBJECTIVES: The elbow joint is vulnerable to stiffness, especially after trauma. The aim of this study was to evaluate the results of open arthrolysis for posttraumatic elbow stiffness. DESIGN: Cohort retrospective study. PATIENTS: Eighteen consecutive patients were evaluated by an independent observer at an average of 16 months (6 to 43) after open elbow arthrolysis was performed for posttraumatic stiffness. Initial traumas were: isolated fractures (11) or dislocation (1) and complex fracture-dislocations (6). Initial treatments were: nonoperative (3), radial head resection (1), and ORIF (14). Patients presented predominantly with mixed contractures (combined extrinsic and intrinsic contractures). INTERVENTION: Open elbow arthrolysis. MAIN OUTCOME MEASUREMENTS: Elbow function and patient satisfaction were the principal outcome measures. At follow-up European Society for Shoulder and Elbow Surgery (SECEC) elbow scores were calculated. RESULTS AND CONCLUSIONS: Three patients had minor postoperative complications: 1 partial wound dehiscence, 1 subcutaneous infection, and one seroma. None of these complications influenced the final result clinically. The mean total increase in range of motion was 40 degrees (13 to 112 degrees), with a mean gain in flexion of 14 degrees (0 to 45 degrees) and 26 degrees in extension (5 to 67 degrees). No patient showed signs of elbow instability. There was no radiographic evidence of osteoarthritis progression at follow-up. We did not find any correlations between the type of stiffness, the approaches used, and the results. However, patients with the greatest preoperative stiffness had significantly better improvement of mobility (P<0.001). The best results were obtained in patients who had arthrolysis done within 1 year after the initial trauma (P=0.008). The mean SECEC scores were 88 (52 to 100) for the injured elbows, and 96 (88 to 100) for the contralateral elbows. CONCLUSION: Open elbow arthrolysis for patients with posttraumatic stiffness improves joint function and provides patient satisfaction. The best results, in terms of gain of motion and patient satisfaction, were obtained in patients with severe stiffness who had operations within the first year after initial trauma.
Resumo:
This study aimed to determine changes in spring-mass model (SMM) characteristics, plantar pressures, and muscle activity induced by the repetition of sprints in soccer-specific conditions; i.e., on natural grass with soccer shoes. Thirteen soccer players performed 6 × 20 m sprints interspersed with 20 s of passive recovery. Plantar pressure distribution was recorded via an insole pressure recorder device divided into nine areas for analysis. Stride temporal parameters allowed to estimate SMM characteristics. Surface electromyographic activity was monitored for vastus lateralis, rectus femoris, and biceps femoris muscles. Sprint time, contact time, and total stride duration lengthened from the first to the last repetition (+6.7, +12.9, and +9.3%; all P < 0.05), while flight time, swing time, and stride length remained constant. Stride frequency decrease across repetitions approached significance (-6.8%; P = 0.07). No main effect of the sprint number or any significant interaction between sprint number and foot region was found for maximal force, mean force, peak pressure and mean pressure (all P > 0.05). Center of mass vertical displacement increased (P < 0.01) with time, together with unchanged (both P > 0.05) peak vertical force and leg compression. Vertical stiffness decreased (-15.9%; P < 0.05) across trials, whereas leg stiffness changes were not significant (-5.9%; P > 0.05). Changes in root mean square activity of the three tested muscles over sprint repetitions were not significant. Although repeated sprinting on natural grass with players wearing soccer boots impairs their leg-spring behavior (vertical stiffness), there is no substantial concomitant alterations in muscle activation levels or plantar pressure patterns.
Resumo:
Liver stiffness values in transient elastography (TE) have to be interpreted with caution. Steatosis, congestion, acute inflammation and extrahepatic cholestasis can indeed influence measurements. Obtained stiffness values in the cirrhotic range can also be present in the absence of fibrosis as in hepatic amyloidosis. Here we report two cases of systemic amyloidosis with hepatic involvement where high stiffness values were measured at TE. In fact, deposits of amyloid may increase the rigidity of the liver parenchyma resulting in higher liver stiffness values. Therefore, results of TE should always be interpreted in their clinical context and if inconsistent, the performance of a liver biopsy might be necessary.
Resumo:
In the latest years the importance of high resolution analysis of the microbial cell surface has been increasingly recognized. Indeed, in order to better understand bacterial physiology and achieve rapid diagnostic and treatment techniques, a thorough investigation of the surface modifications induced on bacteria by different environmental conditions or drugs is essential. Several instruments are nowadays available to observe at high resolution specific properties of microscopic samples. Among these, AFM can routinely study single cells in physiological conditions, measuring the mechanical properties of their membrane at a nanometric scale (force volume). Such analyses, coupled with high resolution investigation of their morphological properties, are increasingly used to characterize the state of single cells. In this work we exploit such technique to characterize bacterial systems. We have performed an analysis of the mechanical properties of bacteria (Escherichia coli) exposed to different conditions. Such measurements were performed on living bacteria, by changing in real-time the liquid environment: standard phosphate buffered saline, antibiotic (ampicillin) in PBS and growth medium. In particular we have focused on the determination of the membrane stiffness modifications induced by these solutions, in particular between stationary and replicating phases and what is the effect of the antibiotic on the bacterial structure.
Resumo:
Pendant la grossesse, la pression artérielle reste stable malgré une nette augmentation du volume d'éjection systolique et du débit cardiaque. Cette stabilité vient d'un côté d'une vasodilatation périphérique entraînant une diminution des résistances périphériques et d'un autre côté d'une moindre rigidité des principales artères notamment l'aorte. En conséquence, l'amplitude des ondes de pouls est atténuée, de même que leur vitesse de propagation dans le sens tant antérogade que rétrograde (ondes réfléchies). Les ondes réfléchies tendent ainsi à atteindre l'aorte ascendante plus tard durant la systole, voire durant la diastole, ce qui peut contribuer à diminuer la pression puisée. La prééclampsie perturbe massivement ce processus d'adaptation. Il s'agit d'une maladie hypertensive de la grossesse engendrant une importante morbidité et mortalité néonatale et maternelle. Il est à remarquer que la diminution de la rigidité artérielle n'est pas observée chez les patientes atteintes avec pour conséquence une forte augmentation de la pression systolique centrale (aortique) par les ondes réfléchies. Ce fait a été établi grâce à l'existence de la tonométrie d'aplanation, une méthode permettant l'évaluation non invasive de l'onde de pouls centrale. Dans cette méthode, un senseur de pression piézo-électrique permet de capter l'onde de pouls périphérique, le plus souvent sur l'artère radiale. Par la suite, un algorithme validé permet d'en déduire la forme de l'onde de pouls centrale et de visualiser à quel moment du cycle cardiaque s'y ajoutent les ondes réfléchies. Plusieurs études font état d'une forte augmentation de la pression systolique centrale par les ondes réfléchies chez les patientes atteintes de prééclampsie, suggérant l'utilisation de cette méthode pour le diagnostic et le monitoring voire pour le dépistage de ces patientes. Pour atteindre ce but, il est nécessaire d'établir des normes en rapport notamment avec l'âge gestationnel. Dans la littérature, les données pertinentes actuellement disponibles sont variables, voire contradictoires. Par exemple, les ondes réfléchies proéminentes dans la partie diastolique de l'onde de pouls centrale disparaissaient chez des patientes enceintes au 3eme trimestre comparées à des contrôles non enceintes dans une étude lausannoise, alors que deux autres études présentent l'observation contraire. Autre exemple, certains auteurs décrivent une diminution progressive de l'augmentation systolique jusqu'à l'accouchement alors que d'autres rapportent un nadir aux environs du 6ème mois, suivi d'un retour à des valeurs plus élevées en fin de grossesse. Les mesures effectuées dans toutes ces études différaient dans leur exécution, les patientes étant notamment dans des postions corporelles différentes (couchées, semi-couchées, assises, en décubitus latéral). Or nous savons que le status hémodynamique est très sensible aux changements de position, particulièrement durant la grossesse où l'utérus gravide est susceptible d'avoir des interactions mécaniques avec les veines et possiblement les artères abdominales. Ces différences méthodologiques pourraient donc expliquer, au moins en partie, l'hétérogénéité des résultats concernant l'onde de pouls chez la femme enceinte, ce qui à notre connaissance n'a jamais été exploré. Nous avons mesuré l'onde de pouls dans les positions assise et couchée chez des femmes enceintes, au 3eme trimestre d'une grossesse non compliquée, et nous avons effectué une comparaison avec des données similaire obtenues chez des femmes non enceintes en bonne santé habituelle. Les résultats montrent que la position du corps a un impact majeur sur la forme de l'onde de pouls centrale. Comparée à la position assise, la position couchée se caractérise par une moindre augmentation systolique et, par contraste, une augmentation diastolique plus marquée. De manière inattendue, cet effet s'observe aussi bien en présence qu'en l'absence de grossesse, suggérant que la cause première n'en réside pas dans les interactions mécaniques de l'utérus gravide avec les vaisseaux sanguins abdominaux. Nos observations pourraient par contre être expliquées par l'influence de la position du corps, via un phénomène hydrostatique simple, sur la pression transmurale des artères éloignées du coeur, tout particulièrement celles des membres inférieurs et de l'étage abdominal. En position verticale, ces vaisseaux augmenteraient leur rigidité pour résister à la distension de leur paroi, ce qui y accroîtrait la vitesse de propagation des ondes de pression. En l'état, cette explication reste hypothétique. Mais quoi qu'il en soit, nos résultats expliquent certaines discordances entre les études conduites à ce jour pour caractériser l'influence de la grossesse physiologique sur la forme de l'onde de pouls central. De plus, ils indiquent que la position du corps doit être prise en compte lors de toute investigation utilisant la tonométrie d'applanation pour déterminer la rigidité des artères chez les jeunes femmes enceintes ou non. Il sera aussi nécessaire d'en tenir compte pour établir des normes en vue d'une utilisation de la tonométrie d'aplanation pour dépister ou suivre les patientes atteintes de prééclampsie. Il serait enfin intéressant d'évaluer si l'effet de la position sur la forme de l'onde de pouls central existe également dans l'autre sexe et chez des personnes plus âgées.
Resumo:
We use cryo-electron microscopy (cryo-EM) to study the 3D shapes of 94-bp-long DNA minicircles and address the question of whether cyclization of such short DNA molecules necessitates the formation of sharp, localized kinks in DNA or whether the necessary bending can be redistributed and accomplished within the limits of the elastic, standard model of DNA flexibility. By comparing the shapes of covalently closed, nicked and gapped DNA minicircles, we conclude that 94-bp-long covalently closed and nicked DNA minicircles do not show sharp kinks while gapped DNA molecules, containing very flexible single-stranded regions, do show sharp kinks. We corroborate the results of cryo-EM studies by using Bal31 nuclease to probe for the existence of kinks in 94-bp-long minicircles.
Resumo:
Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content.
Resumo:
Ligament balance is an important and subjective task performed during total knee arthroplasty (TKA) procedure. For this reason, it is desirable to develop instruments to quantitatively assess the soft-tissue balance since excessive imbalance can accelerate prosthesis wear and lead to early surgical revision. The instrumented distractor proposed in this study can assist surgeons on performing ligament balance by measuring the distraction gap and applied load. Also the device allows the determination of the ligament stiffness which can contribute a better understanding of the intrinsic mechanical behavior of the knee joint. Instrumentation of the device involved the use of hall-sensors for measuring the distractor displacement and strain gauges to transduce the force. The sensors were calibrated and tested to demonstrate their suitability for surgical use. Results show the distraction gap can be measured reliably with 0.1mm accuracy and the distractive loads could be assessed with an accuracy in the range of 4N. These characteristics are consistent with those have been proposed, in this work, for a device that could assist on performing ligament balance while permitting surgeons evaluation based on his experience. Preliminary results from in vitro tests were in accordance with expected stiffness values for medial collateral ligament (MCL) and lateral collateral ligament (LCL).
Resumo:
To conserve natural resources and energy, the amount of recycled asphalt pavement has been steadily increasing in the construction of asphalt pavements. The objective of this study is to develop quality standards for inclusion of high RAP content. To determine if the higher percentage of RAP materials can be used on Iowa’s state highways, three test sections with target amounts of RAP materials of 30%, 35% and 40% by weight were constructed on Highway 6 in Iowa City. To meet Superpave mix design requirements for mixtures with high RAP contents, it was necessary to fractionate the RAP materials. Three test sections with actual RAP materials of 30.0%, 35.5% and 39.2% by weight were constructed and the average field densities from the cores were measured as 95.3%, 94.0%, and 94.3%, respectively. Field mixtures were compacted in the laboratory to evaluate moisture sensitivity using a Hamburg Wheel Tracking Device. After 20,000 passes, rut depths were less than 3mm for mixtures obtained from three test sections. The binder was extracted from the field mixtures from each test section and tested to identify the effects of RAP materials on the performance grade of the virgin binder. Based on Dynamic Shear Rheometer and Bending Beam Rheometer tests, the virgin binders (PG 64-28) from test sections with 30.0%, 35.5% and 39.2% RAP materials were stiffened to PG 76-22, PG 76-16, and PG 82-16, respectively. The Semi-Circular Bending (SCB) test was performed on laboratory compacted field mixtures with RAP amounts of 30.0%, 35.5% and 39.2% at two different temperatures of -18 and -30 °C. As the test temperature decreased, the fracture energy decreased and the stiffness increased. As the RAP amount increased, the stiffness increased and the fracture energy decreased. Finally, a condition survey of the test sections was conducted to evaluate their short-term pavement performance and the reflective transverse cracking did not increase as RAP amount was increased from 30.0% to 39.2%.
Resumo:
After cemented total hip arthroplasty (THA) there may be failure at either the cement-stem or the cement-bone interface. This results from the occurrence of abnormally high shear and compressive stresses within the cement and excessive relative micromovement. We therefore evaluated micromovement and stress at the cement-bone and cement-stem interfaces for a titanium and a chromium-cobalt stem. The behaviour of both implants was similar and no substantial differences were found in the size and distribution of micromovement on either interface with respect to the stiffness of the stem. Micromovement was minimal with a cement mantle 3 to 4 mm thick but then increased with greater thickness of the cement. Abnormally high micromovement occurred when the cement was thinner than 2 mm and the stem was made of titanium. The relative decrease in surface roughness augmented slipping but decreased debonding at the cement-bone interface. Shear stress at this site did not vary significantly for the different coefficients of cement-bone friction while compressive and hoop stresses within the cement increased slightly.
Resumo:
It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads with shallow cover, provided the backfill is well compacted. Although industry standards require carefully compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil conditions by analytically expanding the experimental results through the use of the finite element program CANDE. The test procedures used here are conservative especially for low-density fills loaded to high contact stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be expected to be considerably better. With those caveats, the following conclusions are drawn from this study. Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to more than 110 pcf (17.3 kN/m3) is satisfactory. The failure mode for all pipes with all backfills is localized wall bending. At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill density is increased from about 50 pcf (7.9 kN/m^3) to 90 pcf (14.1 kN/m^3). Above that unit weight, little improvement in the soil-pipe system is observed. Although pipe stiffness may vary as much as 16%, analyses show that backfill density is more important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with increasing backfill density. When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe deflections are slighly higher than when loaded at the center. Except for low density glacial till, the deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of highway truck tire pressures, deflections are negligible. All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface temperatures, approximately 122°F (50°C), failed to meet these requirements. Some HDPE pipe installations may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any portion of the pipe circumference reduced the load carrying capacity of specimens. The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes require a 12 in. (305 mm) minimum soil cover.
Resumo:
The atomic force microscope is a convenient tool to probe living samples at the nanometric scale. Among its numerous capabilities, the instrument can be operated as a nano-indenter to gather information about the mechanical properties of the sample. In this operating mode, the deformation of the cantilever is displayed as a function of the indentation depth of the tip into the sample. Fitting this curve with different theoretical models permits us to estimate the Young's modulus of the sample at the indentation spot. We describe what to our knowledge is a new technique to process these curves to distinguish structures of different stiffness buried into the bulk of the sample. The working principle of this new imaging technique has been verified by finite element models and successfully applied to living cells.
Resumo:
In the previous study, moisture loss indices were developed based on the field measurements from one CIR-foam and one CIR-emulsion construction sites. To calibrate these moisture loss indices, additional CIR construction sites were monitored using embedded moisture and temperature sensors. In addition, to determine the optimum timing of an HMA overlay on the CIR layer, the potential of using the stiffness of CIR layer measured by geo-gauge instead of the moisture measurement by a nuclear gauge was explored. Based on the monitoring the moisture and stiffness from seven CIR project sites, the following conclusions are derived: 1. In some cases, the in-situ stiffness remained constant and, in other cases, despite some rainfalls, stiffness of the CIR layers steadily increased during the curing time. 2. The stiffness measured by geo-gauge was affected by a significant amount of rainfall. 3. The moisture indices developed for CIR sites can be used for predicting moisture level in a typical CIR project. The initial moisture content and temperature were the most significant factors in predicting the future moisture content in the CIR layer. 4. The stiffness of a CIR layer is an extremely useful tool for contractors to use for timing their HMA overlay. To determine the optimal timing of an HMA overlay, it is recommended that the moisture loss index should be used in conjunction with the stiffness of the CIR layer.
Resumo:
BACKGROUND AND AIMS: Liver stiffness is increasingly used in the non-invasive evaluation of chronic liver diseases. Liver stiffness correlates with hepatic venous pressure gradient (HVPG) in patients with cirrhosis and holds prognostic value in this population. Hence, accuracy in its measurement is needed. Several factors independent of fibrosis influence liver stiffness, but there is insufficient information on whether meal ingestion modifies liver stiffness in cirrhosis. We investigated the changes in liver stiffness occurring after the ingestion of a liquid standard test meal in this population. METHODS: In 19 patients with cirrhosis and esophageal varices (9 alcoholic, 9 HCV-related, 1 NASH; Child score 6.9±1.8), liver stiffness (transient elastography), portal blood flow (PBF) and hepatic artery blood flow (HABF) (Doppler-Ultrasound) were measured before and 30 minutes after receiving a standard mixed liquid meal. In 10 the HVPG changes were also measured. RESULTS: Post-prandial hyperemia was accompanied by a marked increase in liver stiffness (+27±33%; p<0.0001). Changes in liver stiffness did not correlate with PBF changes, but directly correlated with HABF changes (r = 0.658; p = 0.002). After the meal, those patients showing a decrease in HABF (n = 13) had a less marked increase of liver stiffness as compared to patients in whom HABF increased (n = 6; +12±21% vs. +62±29%,p<0.0001). As expected, post-prandial hyperemia was associated with an increase in HVPG (n = 10; +26±13%, p = 0.003), but changes in liver stiffness did not correlate with HVPG changes. CONCLUSIONS: Liver stiffness increases markedly after a liquid test meal in patients with cirrhosis, suggesting that its measurement should be performed in standardized fasting conditions. The hepatic artery buffer response appears an important factor modulating postprandial changes of liver stiffness. The post-prandial increase in HVPG cannot be predicted by changes in liver stiffness.