953 resultados para bacteria immobilization
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology.
Resumo:
The objective of this study was to identify ant occurrence in hospital environments in the State of Santa Catarina, along with associated bacteria. Ants were collected monthly from five inpatient clinics in two hospitals in the municipality of Chapecó, from August 2003 to June 2004. They were collected under aseptic conditions using swabs moistened with sterile distilled water and put into test tubes containing BHI for microbiological analysis. After 24 hours, cultures were made in both 5% sheep blood and MacConkey agar, which were incubated for 24 hours at 35/37°C. The Gram characterization, culture identification and biochemical characterization followed standardized rules for clinical microbiology. Seven species of ants were identified, of which the most frequent were Monomorium pharaonis (71.5%) and Solenopsis saevissima (57%), and nineteen species of bacteria was isolated from hospital "A".
Resumo:
Energy conservation in chemotrophic anaerobic bacteria is achieved by two possible processes, substrate level phosphorylation (SLP) and electron transfer phosphorylation (ETP). This second mechanism, also known as respiration, involves chemiosmotic coupling. However, a third mechanism for energy coupling was recently proposed: the flavin-based electron bifurcation (FBEB). (...)
Resumo:
INTRODUCTION : Antimicrobial resistance is an increasing threat in hospitalized patients, and inappropriate empirical antimicrobial therapy is known to adversely affect outcomes in ventilator-associated pneumonia (VAP). The aim of this study was to evaluate antimicrobial usage, incidence, etiology, and antimicrobial resistance trends for prominent nosocomial pathogens causing ventilator-associated pneumonia in a clinical-surgical intensive care unit (ICU). METHODS : Gram-negative bacilli and Staphylococcus aureus causing VAP, as well as their antimicrobial resistance patterns and data on consumption (defined daily dose [DDD] per 1,000 patient days) of glycopeptides, extended-spectrum cephalosporins, and carbapenems in the unit were evaluated in two different periods (A and B). RESULTS: Antimicrobial use was high, mainly of broad-spectrum cephalosporins, with a significant increase in the consumption of glycopeptides (p < 0.0001) and carbapenems (p < 0.007) in period B. For Acinetobacter baumannii and members of the Enterobacteriaceae family, 5.27- and 3.06-fold increases in VAPs, respectively, were noted, and a significant increase in resistance rates was found for imipenem-resistant A. baumannii (p = 0.003) and third-generation cephalosporins-resistant Enterobacteriaceae (p = 0.01) isolates in this same period. CONCLUSIONS: Our results suggest that there is a link between antibiotics usage at institutional levels and resistant bacteria. The use of carbapenems was related to the high rate of resistance in A. baumannii and therefore a high consumption of imipenem/meropenem could play a major role in selective pressure exerted by antibiotics in A. baumannii strains.
Resumo:
IntroductionInsects have been described as mechanical vectors of nosocomial infections.MethodsNon-biting flying insects were collected inside a pediatric ward and neonatal-intensive care unit (ICU) of a Brazilian tertiary hospital.ResultsMost (86.4%) of them were found to carry one or more species of bacteria on their external surfaces. The bacteria isolated were Gram-positive bacilli (68.2%) or cocci (40.9%), and Gram-negative bacilli (18.2%).ConclusionsInsects collected inside a hospital were carrying pathogenic bacteria; therefore, one must consider the possibility they may act as mechanical vectors of infections, in especially for debilitated or immune-compromised patients in the hospital environments where the insects were collected.
Synergistic interactions in mixed-species biofilms of pathogenic bacteria from the respiratory tract
Resumo:
IntroductionMixed-species biofilms are involved in a wide variety of infections. We studied the synergistic interactions during dual-species biofilm formation among isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia.MethodsIsolates were cultured as single-species and all possible combinations of dual-species biofilms.ResultsThe 61 A. baumannii biofilms increased by 26-fold when cultured with S. maltophilia isolates; 62 A. baumannii biofilms increased by 20-fold when cultured with S. maltophilia isolates; and 31 P. aeruginosa biofilms increased by 102-fold when cultured with S. maltophilia 106.ConclusionsSynergy was observed between two isolates, including those that inherently lacked biofilm formation ability.
Resumo:
ABSTRACTINTRODUCTION: Monte Carlo simulations have been used for selecting optimal antibiotic regimens for treatment of bacterial infections. The aim of this study was to assess the pharmacokinetic and pharmacodynamic target attainment of intravenous β-lactam regimens commonly used to treat bloodstream infections (BSIs) caused by Gram-negative rod-shaped organisms in a Brazilian teaching hospital.METHODS: In total, 5,000 patients were included in the Monte Carlo simulations of distinct antimicrobial regimens to estimate the likelihood of achieving free drug concentrations above the minimum inhibitory concentration (MIC; fT > MIC) for the requisite periods to clear distinct target organisms. Microbiological data were obtained from blood culture isolates harvested in our hospital from 2008 to 2010.RESULTS: In total, 614 bacterial isolates, including Escherichia coli, Enterobacterspp., Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, were analyzed Piperacillin/tazobactam failed to achieve a cumulative fraction of response (CFR) > 90% for any of the isolates. While standard dosing (short infusion) of β-lactams achieved target attainment for BSIs caused by E. coliand Enterobacterspp., pharmacodynamic target attainment against K. pneumoniaeisolates was only achieved with ceftazidime and meropenem (prolonged infusion). Lastly, only prolonged infusion of high-dose meropenem approached an ideal CFR against P. aeruginosa; however, no antimicrobial regimen achieved an ideal CFR against A. baumannii.CONCLUSIONS:These data reinforce the use of prolonged infusions of high-dose β-lactam antimicrobials as a reasonable strategy for the treatment of BSIs caused by multidrug resistant Gram-negative bacteria in Brazil.
Resumo:
In this work two different procedures to utilize the sol-gel technology were applied to immobilize/encapsulate enzymes and living cells. CO2 has reached levels in the atmosphere that make it a pollutant. New methods to utilize this gas to obtain products of added value can be very important, both from an environmentally point of view and from an economic standpoint. The first goal of this work was to study the first reaction of a sequential, three-step, enzymatic process that carries out the conversion of CO2 to methanol. Of the three oxidoreductases involved, our focus was on formate dehydrogenase (FateDH) that converts CO2 to formate. This reaction requires the presence of the cofactor β-nicotinamide adenine dinucleotide in reduced form (NADH). The cofactor is expensive and unstable. Our experiments were directed towards generating NADH from its oxidized form (NAD+), using glutamate dehydrogenase (GDH). The formation of NADH from NAD+ in aqueous medium was studied with both free and sol-gel entrapped GDH. This reaction was then followed by the conversion of CO2 to formate, catalysed by free or sol-gel entrapped FateDH. The quantification of NADH/NAD+ was made using UV/Vis spectroscopy. Our results showed that it was possible to couple the GDH-catalyzed generation of the cofactor NADH with the FateDH-catalyzed conversion of CO2, as confirmed by the detection of formate in the medium, using High Performance Liquid Chromatography (HPLC). The immobilization of living cells can be advantageous from the standpoint of ease of recovery, reutilization and physical separation from the medium. Also dead cells may not always exhibit enzymatic activities found with living cells. In this work cell encapsulation was performed using Escherichia coli bacteria. To reduce toxicity for living organisms, the sol-gel method was different than for enzymes, and involved the use of aqueous-based precursors. Initial encapsulation experiments and viability tests were carried out with E. coli K12. Our results showed that sol-gel entrapment of the cells was achieved, and that cell viability could be increased with additives, namely betaine that led to greater viability improvement and was selected for further studies. For an approach to “in-cell” Nuclear Magnetic Resonance (NMR) experiments, the expression of the protein ctCBM11 was performed in E. coli BL21. It was possible to obtain an NMR signal from the entrapped cells, a considerable proportion of which remained alive after the NMR experiments. However, it was not possible to obtain a distinctive NMR signal from the target protein to distinguish it from the other proteins in the cell.
Resumo:
Magnetospirillum (M.) sp. strain Lusitani, a perchlorate reducing bacteria (PRB), was previously isolated from a wastewater treatment plant and phylogenetic analysis was performed to classify the isolate. The DNA sequence of the genes responsible for perchlorate reduction and chlorite dismutation was determined and a model was designed based on the physiological roles of the proteins involved in the pcr-cld regulon. Chlorite dismutase (Cld) was purified from Magnetospirillum sp. strain Lusitani cells grown in anaerobiosis in the presence of perchlorate. The protein was purified up to electrophoretic grade using HPLC techniques as a 140 kDa homopentamer comprising five ~28 kDa monomers. Steady-state kinetic studies showed that the enzyme follows a Michaelis-Menten model with optimal pH and temperature of 6.0 and 5°C, respectively. The average values for the kinetic constants KM and Vmax were respectively 0.56 mM and 10.2 U, which correspond to a specific activity of 35470 U/mg and a turnover number of 16552 s-1. Cld from M. sp. strain Lusitani is inhibited by the product chloride, but not by dioxygen. Inhibition constants KiC= 460 mM and KiU= 480 mM indicated that sodium chloride is a weak mixed inhibitor of Cld, with a slightly stronger competitive character. The X-ray crystallography structure of M. sp. strain Lusitani Cld was solved at 3.0 Å resolution. In agreement with cofactor content biochemical analysis, the X-ray data showed that each Cld monomer harbors one heme b coordinated by a histidine residue (His188), hydrogen-bonded to a conserved glutamic acid residue (Glu238). The conserved neighboring arginine residue (Arg201) important for substrate positioning, was found in two different conformations in different monomers depending on the presence of the exogenous ligand thiocyanate. UV-Visible and CW-EPR spectroscopies were used to study the effect of redox agents, pH and exogenous ligands on the heme environment.
Resumo:
Staphylococcus aureus, Escherichia coli, Proteussp., Providenciasp., Citrobactersp. and Klebsiellasp. were isolated from calliphorid flies collected in eight street markets in the city of Manaus, Amazonas State, Brazil. The presence of £. coliin the samples suggests that faecal contamination is occurring and that these flies are potential vehicles of enteropathogenic bacteria to exposed foods.
Resumo:
In order to determine the lethal dose (96-h LD50) of the bacteria Aeromonas hydrophila to matrinxã, Brycon amazonicus, to be applied in challenge tests, 90 fish (63.23 ± 6.39 g) were divided into five treatments, with different bacterial solutions: T1 - Control (0.9% NaCl saline solution); T2 (4 x 10(11) cells/ mL); T3 (5 x 10(11) cells/ mL); T4 (1.36 x 10(12) cells/ mL) and T5 (3.06 x 10(12) cells/ mL). Fish were previously anesthetized with benzocaine (60 mg L-1), inoculated in the peritoneal cavity with the bacterial suspensions and then distributed into fifteen 80-L test chambers, where the water variables were monitored and fish mortality was observed. The experiment was randomly designed in three replicates and the 96-h LD50 was estimated according to the trimmed Spearman-Karber method. Water quality variables remained within adequate ranges for fish health and performance. Fish mortality rate increased with the bacterial concentrations of A. hydrophila (T1 = 0%; T2 = 16.66%; T3 = 44.44%; T4 = 72.22% and T5 = 100%), and the first mortalities were observed after 57 h, although the signs of the bacterial infection were already observed 24 h after the inoculation. The results indicate that the 96-h LD50 value of A. hydrophila to matrinxã is 6.66 x 10(11) cells/ mL.
Resumo:
ABSTRACT Maize plants can establish beneficial associations with plant growth-promoting bacteria. However, few studies have been conducted on the characterization and inoculation of these bacteria in the Amazon region. This study aimed to characterize endophytic bacteria isolated from maize in the Amazon region and to assess their capacity to promote plant growth. Fifty-five bacterial isolates were obtained from maize grown in two types of ecosystems, i.e., a cerrado (savanna) and a forest area. The isolates were characterized by the presence of the nifH gene, their ability to synthesize indole-3-acetic acid (IAA) and solubilize calcium phosphate (CaHPO4), and 16S rRNA partial gene sequencing. Twenty-four bacteria contained the nifH gene, of which seven were isolated from maize plants cultivated in a cerrado area and seventeen from a forest area. Fourteen samples showed the capacity to synthesize IAA and only four solubilized calcium phosphate. The following genera were found among these isolates: Pseudomonas; Acinetobacter; Enterobacter; Pantoea; Burkholderia and Bacillus. In addition, eight isolates with plant growth-promoting capacity were selected for a glasshouse experiment involving the inoculation of two maize genotypes (a hybrid and a variety) grown in pots containing soil. Inoculation promoted the development of the maize plants but no significant interaction between maize cultivar and bacterial inoculation was found. A high diversity of endophytic bacteria is present in the Amazon region and these bacteria have potential to promote the development of maize plants.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
The metabolism of methanogenic archaea is inhibited by 2-bromoethanesulfonate (BES). Methane production is blocked because BES is an analog of methyl-coenzyme M and competes with this key molecule in the last step of methanogenesis. For this reason, BES is commonly used in several studies to avoid growth of acetoclastic and hydrogenotrophic methanogens [1]. Despite its effectiveness as methanogenic inhibitor, BES was found to alter microbial communities’ structure, to inhibit the metabolism of non-methanogenic microorganisms and to stimulate homoacetogenic metabolism [2,3]. Even though sulfonates have been reported as electron acceptors for sulfate- and sulfite-reducing bacteria (SRB), only one study described the reduction of BES by complex microbial communities [4]. In this work, a sulfate-reducing bacterium belonging to Desulfovibrio genus (98 % identity at the 16S rRNA gene level with Desulfovibrio aminophilus) was isolated from anaerobic sludge after several successive transfers in anaerobic medium containing BES as sole substrate. Sulfate was not supplemented to the anaerobic growth medium. This microorganism was able to grow under the following conditions: on BES plus H2/CO2 in bicarbonate buffered medium; on BES without H2/CO2 in bicarbonate buffered medium; and on BES in phosphate buffered medium. The main products of BES utilization were sulfide and acetate, the former was produced by the reduction of sulfur from the sulfonate moiety of BES and the latter likely originated from the carbon backbone of the BES molecule. BES was found, in this study, to represent not only an alternative electron acceptor but also to serve as electron donor, and sole carbon and energy source, supporting growth of a Desulfovibrio sp. obtained in pure culture. This is the first study that reports growth of SRB with BES as electron donor and electron acceptor, showing that the methanogenic inhibitor is a substrate for anaerobic growth.