928 resultados para audio coding
Resumo:
Peer-reviewed
Resumo:
Cooperative transmission can be seen as a "virtual" MIMO system, where themultiple transmit antennas are in fact implemented distributed by the antennas both at the source and the relay terminal. Depending on the system design, diversity/multiplexing gainsare achievable. This design involves the definition of the type of retransmission (incrementalredundancy, repetition coding), the design of the distributed space-time codes, the errorcorrecting scheme, the operation of the relay (decode&forward or amplify&forward) and thenumber of antennas at each terminal. Proposed schemes are evaluated in different conditionsin combination with forward error correcting codes (FEC), both for linear and near-optimum(sphere decoder) receivers, for its possible implementation in downlink high speed packetservices of cellular networks. Results show the benefits of coded cooperation over directtransmission in terms of increased throughput. It is shown that multiplexing gains areobserved even if the mobile station features a single antenna, provided that cell wide reuse of the relay radio resource is possible.
Resumo:
BACKGROUND: Medication adherence has been identified as an important factor for clinical success. Twenty-four Swiss community pharmacists participated in the implementation of an adherence support programme for patients with hypertension, diabetes mellitus and/or dyslipidemia. The programme combined tailored consultations with patients about medication taking (expected at an average of one intervention per month) and the delivery of each drug in an electronic monitoring system (MEMS6?). OBJECTIVE: To explore pharmacists' perceptions and experiences with implementation of the medication adherence programme and to clarify why only seven patients were enrolled in total. SETTING: Community pharmacies in French-speaking Switzerland. METHOD: Individual in-depth interviews were audio-recorded, with 20 of the pharmacists who participated in the adherence programme. These were transcribed verbatim, coded and thematically analysed. Process quality was ensured by using an audit trail detailing the development of codes and themes; furthermore, each step in the coding and analysis was verified by a second, experienced qualitative researcher. MAIN OUTCOME MEASURE: Community pharmacists' experiences and perceptions of the determining factors influencing the implementation of the adherence programme. RESULTS: Four major barriers were identified: (1) poor communication with patients resulting in insufficient promotion of the programme; (2) insufficient collaboration with physicians; (3) difficulty in integrating the programme into pharmacy organisation; and (4) insufficient pharmacist motivation. This was related to the remuneration perceived as insufficient and to the absence of clear strategic thinking about the pharmacist position in the health care system. One major facilitator of the programme's implementation was pre-existing collaboration with physicians. CONCLUSION: A wide range of barriers was identified. The implementation of medication adherence programmes in Swiss community pharmacies would benefit from an extended training aimed at developing communication and change management skills. Individualised onsite support addressing relevant barriers would also be necessary throughout the implementation process.
Resumo:
AIM: Heart disease is recognized as a consequence of dysregulation of cardiac gene regulatory networks. Previously, unappreciated components of such networks are the long non-coding RNAs (lncRNAs). Their roles in the heart remain to be elucidated. Thus, this study aimed to systematically characterize the cardiac long non-coding transcriptome post-myocardial infarction and to elucidate their potential roles in cardiac homoeostasis. METHODS AND RESULTS: We annotated the mouse transcriptome after myocardial infarction via RNA sequencing and ab initio transcript reconstruction, and integrated genome-wide approaches to associate specific lncRNAs with developmental processes and physiological parameters. Expression of specific lncRNAs strongly correlated with defined parameters of cardiac dimensions and function. Using chromatin maps to infer lncRNA function, we identified many with potential roles in cardiogenesis and pathological remodelling. The vast majority was associated with active cardiac-specific enhancers. Importantly, oligonucleotide-mediated knockdown implicated novel lncRNAs in controlling expression of key regulatory proteins involved in cardiogenesis. Finally, we identified hundreds of human orthologues and demonstrate that particular candidates were differentially modulated in human heart disease. CONCLUSION: These findings reveal hundreds of novel heart-specific lncRNAs with unique regulatory and functional characteristics relevant to maladaptive remodelling, cardiac function and possibly cardiac regeneration. This new class of molecules represents potential therapeutic targets for cardiac disease. Furthermore, their exquisite correlation with cardiac physiology renders them attractive candidate biomarkers to be used in the clinic.
Resumo:
Protein-coding genes evolve at different rates, and the influence of different parameters, from gene size to expression level, has been extensively studied. While in yeast gene expression level is the major causal factor of gene evolutionary rate, the situation is more complex in animals. Here we investigate these relations further, especially taking in account gene expression in different organs as well as indirect correlations between parameters. We used RNA-seq data from two large datasets, covering 22 mouse tissues and 27 human tissues. Over all tissues, evolutionary rate only correlates weakly with levels and breadth of expression. The strongest explanatory factors of purifying selection are GC content, expression in many developmental stages, and expression in brain tissues. While the main component of evolutionary rate is purifying selection, we also find tissue-specific patterns for sites under neutral evolution and for positive selection. We observe fast evolution of genes expressed in testis, but also in other tissues, notably liver, which are explained by weak purifying selection rather than by positive selection.
Resumo:
Tämän työn teoreettisen sisällön tavoitteena on esitellä multimedian eri elementit ja Moving Picture Experts Groupin kehittämä MPEG-formaattiperhe, joka yhdistää kattavimmin eri elementit multimediaesityksiksi. Työssä esitellään videon ja audion pakkausformaatit MPEG-1 ja MPEG-2, interaktiivisen median jakelun verkoissa mahdollistava MPEG-4, multimediasisällön kuvausstandardi MPEG-7 sekä multimedian toimitusketjun hallinnan verkoissa määrittävä MPEG-21. Edellisten lisäksi teoreettisessa osassa esitellään multimediaohjelmistoista SMIL-teknologia ja selostetaan yksityiskohtaisesti, kuinka sillä luodaan multimediaesityksiä. Empiirisessä osassa laaditaan Helsingin yliopiston Maaseudun tutkimus- ja koulutuskeskukselle kehittämissuunnitelma, jossa multimedian elementtejä käytetään mahdollisimman monipuolisesti kehittämään aikuiskoulutusta. Suunnitelman perustaksi tehtiin koulutushenkilökunnalle osaamiskartoitus ja kartoitettiin yksikön tekninen valmius hyödyntää multimediaa. Suunnitelman mielekästä jäsentämistä varten yksikön aikuiskoulutus jaettiin neljään osaan: varsinaiseen koulutukseen, sitä tukevaan tutkimus- ja kehittämistoimintaan, opetusmateriaaleja tuottavaan julkaisu- ja tietopalvelutoimintaan sekä edellisiä avustaviin tukitoimintoihin.
Resumo:
A method for optimizing the strength of a parametric phase mask for a wavefront coding imaging system is presented. The method is based on an optimization process that minimizes a proposed merit function. The goal is to achieve modulation transfer function invariance while quantitatively maintaining nal image delity. A parametric lter that copes with the noise present in the captured images is used to obtain the nal images, and this lter is optimized. The whole process results in optimum phase mask strength and optimal parameters for the restoration lter. The results for a particular optical system are presented and tested experimentally in the labo- ratory. The experimental results show good agreement with the simulations, indicating that the procedure is useful.
Resumo:
AIMS/HYPOTHESIS: Exposure of pancreatic beta cells to cytokines released by islet-infiltrating immune cells induces alterations in gene expression, leading to impaired insulin secretion and apoptosis in the initial phases of type 1 diabetes. Long non-coding RNAs (lncRNAs) are a new class of transcripts participating in the development of many diseases. As little is known about their role in insulin-secreting cells, this study aimed to evaluate their contribution to beta cell dysfunction. METHODS: The expression of lncRNAs was determined by microarray in the MIN6 beta cell line exposed to proinflammatory cytokines. The changes induced by cytokines were further assessed by real-time PCR in islets of control and NOD mice. The involvement of selected lncRNAs modified by cytokines was assessed after their overexpression in MIN6 cells and primary islet cells. RESULTS: MIN6 cells were found to express a large number of lncRNAs, many of which were modified by cytokine treatment. The changes in the level of selected lncRNAs were confirmed in mouse islets and an increase in these lncRNAs was also seen in prediabetic NOD mice. Overexpression of these lncRNAs in MIN6 and mouse islet cells, either alone or in combination with cytokines, favoured beta cell apoptosis without affecting insulin production or secretion. Furthermore, overexpression of lncRNA-1 promoted nuclear translocation of nuclear factor of κ light polypeptide gene enhancer in B cells 1 (NF-κB). CONCLUSIONS/INTERPRETATION: Our study shows that lncRNAs are modulated during the development of type 1 diabetes in NOD mice, and that their overexpression sensitises beta cells to apoptosis, probably contributing to their failure during the initial phases of the disease.
Resumo:
The discovery of long non-coding RNA (lncRNA) has dramatically altered our understanding of cancer. Here, we describe a comprehensive analysis of lncRNA alterations at transcriptional, genomic, and epigenetic levels in 5,037 human tumor specimens across 13 cancer types from The Cancer Genome Atlas. Our results suggest that the expression and dysregulation of lncRNAs are highly cancer type specific compared with protein-coding genes. Using the integrative data generated by this analysis, we present a clinically guided small interfering RNA screening strategy and a co-expression analysis approach to identify cancer driver lncRNAs and predict their functions. This provides a resource for investigating lncRNAs in cancer and lays the groundwork for the development of new diagnostics and treatments.
Resumo:
The ability to recognize a shape is linked to figure-ground (FG) organization. Cell preferences appear to be correlated across contrast-polarity reversals and mirror reversals of polygon displays, but not so much across FG reversals. Here we present a network structure which explains both shape-coding by simulated IT cells and suppression of responses to FG reversed stimuli. In our model FG segregation is achieved before shape discrimination, which is itself evidenced by the difference in spiking onsets of a pair of output cells. The studied example also includes feature extraction and illustrates a classification of binary images depending on the dominance of vertical or horizontal borders.
Resumo:
Accurate perception of taste information is crucial for animal survival. In adult Drosophila, gustatory receptor neurons (GRNs) perceive chemical stimuli of one specific gustatory modality associated with a stereotyped behavioural response, such as aversion or attraction. We show that GRNs of Drosophila larvae employ a surprisingly different mode of gustatory information coding. Using a novel method for calcium imaging in the larval gustatory system, we identify a multimodal GRN that responds to chemicals of different taste modalities with opposing valence, such as sweet sucrose and bitter denatonium, reliant on different sensory receptors. This multimodal neuron is essential for bitter compound avoidance, and its artificial activation is sufficient to mediate aversion. However, the neuron is also essential for the integration of taste blends. Our findings support a model for taste coding in larvae, in which distinct receptor proteins mediate different responses within the same, multimodal GRN.