865 resultados para anti-infective agents
Resumo:
Background: The purpose of the present study was to compare the effectiveness of three burns dressings (TransCyte, a bio-engineered skin substitute; Biobrane; and Silvazine cream (silver sulphadiazine and 0.2% chlorhexidine)), in treating children with partial-thickness burns. The primary objective was to determine the days until greater than or equal to90% re-epithelialization. The secondary objectives were to evaluate the number of wounds requiring autografting and the number of dressing changes/local wound care required. Methods: Study wounds were identified on each patient and the patients were randomized to receive TransCyte or Biobrane or Silvazine. Assessment of study wound closure began at 2 days after treatment and continued at least every other day thereafter until the wounds re-epithelialized or were autografted. A laser Doppler imaging system was used as an adjunct to assessing the depth of the burn. Results: Thirty-three patients with 58 wound sites enrolled in the study (TransCyte, n = 20, Biobrane, n = 17; Silvazine, n = 21). Mean time to re-epithelialization was 7.5 days for TransCyte, 9.5 days for Biobrane, and 11.2 days for Silvazine. The number of wounds requiring autografting were 5/21 (24%) for Silvazine, 3/17 (17%) for Biobrane, and 1/20 (5%) for TransCyte. Conclusions: When used in partial-thickness burns in children, TransCyte promotes fastest re-epithelialization and required less overall dressings then Biobrane or Silvazine. Patients who received Silvazine or Biobrane require more autografting than those treated with TransCyte.
Resumo:
he author overviews two research projects in the School of Pharmacy at the University of Queensland. The first examines how GPs individualise drug doses with respect to renal function. The second looks at two different approaches to monitoring aminoglycoside antibiotics. (non-author abstract)
Resumo:
The amphibian temporins, amongst the smallest antimicrobial peptides (AMPs), are α-helical, amphipathic, hydrophobic and cationic and are active mainly against Gram-positive bacteria but inactive or weakly active against Gram-negative bacteria. Here, we report two novel members of the temporin family, named temporin-1Ee (FLPVIAGVLSKLFamide) and temporin-1Re (FLPGLLAGLLamide), whose biosynthetic precursor structures were deduced from clones obtained from skin secretion-derived cDNA libraries of the European edible frog, Pelophylax kl. esculentus, by ‘shotgun’ cloning. Deduction of the molecular masses of each mature processed peptide from respective cloned cDNAs was used to locate respective molecules in reverse-phase HPLC fractions of secretion. Temporin-1Ee (MIC = 10 μM) and temporin-1Re (MIC = 60 μM) were both found to be active against Gram-positive Staphylococcus aureus, but retaining a weak haemolytic activity. To our knowledge, Single-site substitutions can dramatically change the spectrum of activity of a given temporin. Compared with temporine-1Ec, just one chemically-conservative substitution (Val8 instead of Leu8), temporin-1Ee bearing a net charge of +2 displays broad-spectrum activity with particularly high potency on the clinically relevant Gram-negative strains, Escherichia coli (MIC = 40 μM). These factors bode well for translating temporins to be potential drug candidates for the design of new and valuable anti-infective agents.
Resumo:
Aim: To assess the effect of adding zinc oxide nanoparticles to dental adhesives on their anti-microbial and bond strength properties. Methods: 45 human premolars were cut at the cement enamel junction (CEJ) and the crowns were sliced into buccal and lingual halves. The specimens were classified into three groups, etched with 37% phosphoric acid for 15 s and rinsed for 30 s. Single Bond, Single Bond+5% zinc oxide and Single Bond+10% zinc oxide were used in the first, second and third groups. A cylinder of Z250 composite was bonded and cured for 40 s. For anti-bacterial testing, 10 samples of each group were assessed by direct contact test; 10 μL of bacterial suspension was transferred into tubes containing adhesives and incubated for one hour; 300 μL of brain heart infusion (BHI) broth was added to each tube and after 12 h, 50 μL of bacteria and broth were spread on blood agar plates and incubated for 24 h. Results: The colony count decreased significantly in the second and third groups compared to the first. Conclusions: Incorporation of zinc oxide nanoparticles into dental adhesives increases their anti-microbial properties without affecting their bond strength.
Resumo:
Importance of the field: The use of topical agents poses unique and challenging hurdles for drug delivery. Topical steroids effectively control ocular inflammation, but are associated with the well-recognized dilemma of patient compliance. Although administration of topical antimicrobials as prophylaxis is acceptable among ophthalmologists, this common practice has no sound evidence base Developing a new antimicrobial agent or delivery strategy with enhanced penetration by considering the anatomical and physiological constraints exerted by the barriers of the eye is not a commonly perceived strategy. Exploiting the permeability of the sclera, subconjunctival routes may offer a promising alternative for enhanced drug delivery and tissue targeting.Area covered in this review: Ocular drug delivery strategies were reviewed for ocular inflammation and infections clinically adopted for newer class of antimicrobials, which use a multipronged approach to limit risks of endophthalmitis.What the reader will gain: The analysis substantiates a new transscleral drug delivery therapeutic approach for cataract surgery.Take home message: A new anti-inflammatory and anti-infective paradigm that frees the patient from the nuisance of topical therapeutics is introduced, opening a large investigative avenue for future improved therapies.
Resumo:
OBJECTIVE: Tumor necrosis factor (TNF) inhibitors have revolutionized the treatment of severe rheumatoid arthritis (RA), yet drug discontinuation is common. The aim of this study was to compare treatment retention rates and specific causes of anti-TNF discontinuation in a population-based RA cohort. METHODS: All patients treated with etanercept, infliximab, or adalimumab within the Swiss Clinical Quality Management RA cohort between 1997 and 2006 were included in the study. Causes of treatment discontinuation were broadly categorized as adverse events (AEs) or nontoxic causes, and further subdivided into specific categories. Specific causes of treatment interruption were analyzed using a Cox proportional hazards model and adjusted for potential confounders. RESULTS: A total of 2,364 anti-TNF treatment courses met the inclusion criteria. Treatment discontinuation was reported 803 times: 309 with etanercept, 249 with infliximab, and 245 with adalimumab. Drug inefficacy represented the largest single cause of treatment discontinuation (55.8% of cases). The median time of receiving anti-TNF therapy was 37 months, but discontinuation rates differed between the 3 anti-TNF agents (P < 0.001), with shorter retention rates for infliximab (hazard ratio [HR] 1.24, 99% confidence interval [99% CI] 1.01-1.51). The specific causes of treatment discontinuation revealed an increased risk of AEs with infliximab (HR 1.4, 99% CI 1.003-1.96), mostly due to an increased risk of infusion or allergic reactions (HR 2.11, 99% CI 1.23-3.62). Other discontinuation causes were equally distributed between the anti-TNF agents. CONCLUSION: In this population, infliximab was associated with higher overall discontinuation rates compared with etanercept and adalimumab, which is mainly due to an increased risk of infusion or allergic reactions.
Resumo:
The New Zealand green lipped mussel preparation Lyprinol is available without a prescription from a supermarket, pharmacy or Web. The Food and Drug Administration have recently warned Lyprinol USA about their extravagant anti-inflammatory claims for Lyprinol appearing on the web. These claims are put to thorough review. Lyprinol does have anti-inflammatory mechanisms, and has anti-inflammatory effects in some animal models of inflammation. Lyprinol may have benefits in dogs with arthritis. There are design problems with the clinical trials of Lyprinol in humans as an anti-inflammatory agent in osteoarthritis and rheumatoid arthritis, making it difficult to give a definite answer to how effective Lyprinol is in these conditions, but any benefit is small. Lyprinol also has a small benefit in atopic allergy. As anti-inflammatory agents, there is little to choose between Lyprinol and fish oil. No adverse effects have been reported with Lyprinol. Thus, although it is difficult to conclude whether Lyprinol does much good, it can be concluded that Lyprinol probably does no major harm.
Resumo:
18.1 Antibiotics 18.1.1 Introduction to bacteria 18.1.2 Introduction to antibiotics 18.1.3 Inhibitors of bacterial cell wall synthesis 18.1.3.1 β-Lactams 18.1.3.2 Glycopeptides 18.1.4 Inhibitors of bacterial protein synthesis 18.1.4.1 Tetracyclines 18.1.4.2 Aminoglycosides 18.1.4.3 Chloramphenicol 18.1.4.4 Macrolides 18.1.4.5 Lincosamides 18.1.4.6 Oxalazidones 18.1.5 Inhibitors of DNA synthesis 18.2. Anti-tuberculotic drugs 18.2.1 Introduction 18.2.2 Isoniazid 18.2.3 Ethambutol 18.2.4 Rifamycin 18.2.5 Pyrazinamide 18.3. Anti-viral drugs 18.3.1 Introduction to viruses 18.3.2 Drugs used to treat herpesviruses 18.3.3 Drugs used to treat the flu 18.3.4 Drugs used to treat HIV/AIDS 18.4. Antifungal drugs 18.4.1 Introduction to Fungi 18.4.2 Antifungal drugs
Resumo:
Sortase A is a membrane enzyme responsible for the anchoring of surface-exposed proteins to the cell wall envelope of Gram-positive bacteria. As a well-studied member of the sortase subfamily catalysing the cell wall anchoring of important virulence factors to the surface of staphylococci, enterococci and streptococci, sortase A plays a critical role in Gram-positive bacterial pathogenesis. It is thus considered a promising target for the development of new anti-infective drugs that aim to interfere with important Gram-positive virulence mechanisms, such as adhesion to host tissues, evasion of host defences, and biofilm formation. The additional properties of sortase A as an enzyme that is not required for Gram-positive bacterial growth or viability and is conveniently located on the cell membrane making it more accessible to inhibitor targeting, constitute additional reasons reinforcing the view that sortase A is an ideal target for anti-virulence drug development. Many inhibitors of sortase A have been identified to date using high-throughput or in silico screening of compound libraries (synthetic or natural), and while many have proved useful tools for probing the action model of the enzyme, several are also promising candidates for the development into potent inhibitors. This review is focused on the most promising sortase A inhibitor compounds that are currently in development as leads towards a new class of anti-infective drugs that are urgently needed to help combat the alarming increase in antimicrobial resistance.
Resumo:
Juvenile idiopathic arthritis (JIA) is a heterogeneous group of childhood chronic arthritides, associated with chronic uveitis in 20% of cases. For JIA patients responding inadequately to conventional disease-modifying anti-rheumatic drugs (DMARDs), biologic therapies, anti-tumor necrosis factor (anti-TNF) agents are available. In this retrospective multicenter study, 258 JIA-patients refractory to DMARDs and receiving biologic agents during 1999-2007 were included. Prior to initiation of anti-TNFs, growth velocity of 71 patients was delayed in 75% and normal in 25%. Those with delayed growth demonstrated a significant increase in growth velocity after initiation of anti-TNFs. Increase in growth rate was unrelated to pubertal growth spurt. No change was observed in skeletal maturation before and after anti-TNFs. The strongest predictor of change in growth velocity was growth rate prior to anti-TNFs. Change in inflammatory activity remained a significant predictor even after decrease in glucocorticoids was taken into account. In JIA-associated uveitis, impact of two first-line biologic agents, etanercept and infliximab, and second-line or third-line anti-TNF agent, adalimumab, was evaluated. In 108 refractory JIA patients receiving etanercept or infliximab, uveitis occurred in 45 (42%). Uveitis improved in 14 (31%), no change was observed in 14 (31%), and in 17 (38%) uveitis worsened. Uveitis improved more frequently (p=0.047) and frequency of annual uveitis flares was lower (p=0.015) in those on infliximab than in those on etanercept. In 20 patients taking adalimumab, 19 (95%) had previously failed etanercept and/or infliximab. In 7 patients (35%) uveitis improved, in one (5%) worsened, and in 12 (60%) no change occurred. Those with improved uveitis were younger and had shorter disease duration. Serious adverse events (AEs) or side-effects were not observed. Adalimumab was effective also in arthritis. Long-term drug survival (i.e. continuation rate on drug) with etanercept (n=105) vs. infliximab (n=104) was at 24 months 68% vs. 68%, and at 48 months 61% vs. 48% (p=0.194 in log-rank analysis). First-line anti-TNF agent was discontinued either due to inefficacy (etanercept 28% vs. infliximab 20%, p=0.445), AEs (7% vs. 22%, p=0.002), or inactive disease (10% vs. 16%, p=0.068). Females, patients with systemic JIA (sJIA), and those taking infliximab as the first therapy were at higher risk for treatment discontinuation. One-third switched to the second anti-TNF agent, which was discontinued less often than the first. In conclusion, in refractory JIA anti-TNFs induced enhanced growth velocity. Four-year treatment survival was comparable between etanercept and infliximab, and switching from first-line to second-line agent a reasonable therapeutic option. During anti-TNF treatment, one-third with JIA-associated anterior uveitis improved.
Resumo:
A series of 6,11-dihydro-11-oxodibenz[b,e]oxepin-2-acetic acids (DOAA) which are known to be anti-inflammatory agents were studied. The geometries of some of the molecules obtained from X-ray crystallography were used in the calculations as such while the geometries of their derivatives were obtained by local, partial geometry optimization around the Sites of substitution employing the AMI method, keeping the remaining parts of the geometries the same as those in the parent molecules. Molecular electrostatic potential (MEP) mapping was performed for the molecules using optimized hybridization displacement charges (HDC) combined with Lowdin charges, as this charge distribution has been shown earlier to yield near ab initio quality results. A good correlation has been found between the MEP values near the oxygen atoms of the hydroxyl groups of the carboxy groups of the molecules and their anti-inflammatory activities. The result is broadly in agreement with the model proposed earlier by other authors regarding the structure-activity relationship for other similar molecules.
Resumo:
Recently we have reported the effect of (S)-6-aryl urea/thiourea substituted-2-amino-4,5,6,7-tetrahydrobenzod]thiazole derivatives as potent anti-leukemic agents. To elucidate further the Structure Activity Relationship (SAR) studies on the anti-leukemic activity of (S)-2,6-diamino-4,5,6,7 tetrahydrobenzod]thiazole moiety, a series of 2-arlycarboxamide substituted-(S)-6-amino-4,5,6,7-tetrahydrobenzod]thiazole were designed, synthesized and evaluated for their anti-leukemic activity by trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays and cell cycle analysis. Results suggest that the position, number and bulkiness of the substituent on the phenyl ring of aryl carboxamide moiety at 2nd position of 6-amino-4,5,6,7-tetrhydrobenzod]thiazole play a key role in inhibiting the proliferation of leukemia cells. Compounds with ortho substitution showed poor activity and with meta and para substitution showed good activity. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Ethnopharmacological relevance: Malaria is a serious public health problem in the north-eastern region of India including Assam, in view of development of chloroquine resistant Plasmodium falciparum. There is need for alternative and affordable therapy. Aim of the study: This study was conducted to document indigenous knowledge, usage customs and practices of medicinal plant species traditionally used by the residents of Sonitpur district of Tezpur, Assam to treat malaria and its associated symptoms. Materials and methods:A total of 50 randomly selected sampling represented by male (38.76%) and female respondents (12.24%) were interviewed using a semi-structured questionnaire. Results: The present ethno-botanical survey revealed 22 species of plants belonging to 17 botanical families were reported to be used exclusively in this region for the treatment of malaria. Verbenaceae (three species), Menispermaceae (two species), and Acanthaceae (two species) botanical families represented the species that are most commonly cited in this survey work and the detailed use of plants has been collected and described. Conclusions: The most serious threat to the existing knowledge and practice on traditional medicinal plants included cultural change, particularly the influence of modernization and lack of interests shown by the next younger generations were the main problems reported by the informants during the field survey. Hence, the proper documentation of traditional medicinal plants being used as anti-malarial agents and related indigenous knowledge held by the tribal community is an important approach to control the spread of vector-borne diseases like malaria reported in this survey work. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Dictamnus dasycarpus is widely used as a traditional remedy for the treatment of eczema, rheumatism, and other inflammatory diseases in Asia. The current study investigates the molecular mechanism of anti-inflammatory action of the ethanol extract of Dictamnus dasycarpus leaf (DE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Nitric oxide (NO) production was assessed by Griess reaction and the mRNA and protein expressions of pro inflammatory cytokines, transcription factor, and enzymes were determined by real-time RT-PCR and immunoblotting analysis. Results: DE (0.5 and 1 mg/mL) suppressed the NO production by 10 and 33%, respectively, compared to the untreated group in LPS-stimulated RAW 264.7 cells. DE (0.5 and 1 mg/mL) reduced the mRNA expression of key transcription factor nuclear factor-kappa B by 7 and 24%, respectively compared to the untreated group in LPS activated macrophage. The pro inflammatory cytokines such as tumor necrosis factor a and interleukin 1 beta were also decreased by DE treatment. Moreover, the protein expression of pro inflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase 2 were also dramatically attenuated by DE in a dose dependent manner. Conclusions: These results suggest that Dictamnus dasycarpus leaf has a potent anti-inflammatory activity and can be used for the development of new anti-inflammatory agents.
Resumo:
New anti-tubercular agents, imidazo1,2-a]pyridine-2-carboxamide derivatives (5a-q) have been designed and synthesized. The structural considerations of the designed molecules were further supported by the docking study with a long-chain enoyl-acyl carrier protein reductase (InhA). The chemical structures of the new compounds were characterized by IR, H-1 NMR, C-13 NMR, HRMS and elemental analysis. In addition, single crystal X-ray diffraction has also been recorded for compound 5f. Compounds were evaluated in vitro against Mycobacterium tuberculosis H37Rv, and cytotoxicity against HEK-293T cell line. Amongst the tested compounds 5j, 5l and 5q were emerged as good anti-tubercular agents with low cytotoxicity. The structure-anti TB activity relationship of these derivatives was explained by molecular docking. (C) 2014 Elsevier Masson SAS. All rights reserved.