905 resultados para analytic element method
Resumo:
This paper proposes a physical non-linear formulation to deal with steel fiber reinforced concrete by the finite element method. The proposed formulation allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced in the pre-existent finite element numerical system to consider any distribution or quantity of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic of the formulation is the reduced work required by the user to introduce reinforcements, avoiding ""rebar"" elements, node by node geometrical definitions or even complex mesh generation. Bounded connection between long fibers and continuum is considered, for short fibers a simplified approach is proposed to consider splitting. Non-associative plasticity is adopted for the continuum and one dimensional plasticity is adopted to model fibers. Examples are presented in order to show the capabilities of the formulation.
Resumo:
In this paper a new boundary element method formulation for elastoplastic analysis of plates with geometrical nonlinearities is presented. The von Mises criterion with linear isotropic hardening is considered to evaluate the plastic zone. Large deflections are assumed but within the context of small strain. To derive the boundary integral equations the von Karman`s hypothesis is taken into account. An initial stress field is applied to correct the true stresses according to the adopted criterion. Isoparametric linear elements are used to approximate the boundary unknown values while triangular internal cells with linear shape function are adopted to evaluate the domain value influences. The nonlinear system of equations is solved by using an implicit scheme together with the consistent tangent operator derived along the paper. Numerical examples are presented to demonstrate the accuracy and the validity of the proposed formulation.
Resumo:
This paper proposes a boundary element method (BEM) model that is used for the analysis of multiple random crack growth by considering linear elastic fracture mechanics problems and structures subjected to fatigue. The formulation presented in this paper is based on the dual boundary element method, in which singular and hyper-singular integral equations are used. This technique avoids singularities of the resulting algebraic system of equations, despite the fact that the collocation points coincide for the two opposite crack faces. In fracture mechanics analyses, the displacement correlation technique is applied to evaluate stress intensity factors. The maximum circumferential stress theory is used to evaluate the propagation angle and the effective stress intensity factor. The fatigue model uses Paris` law to predict structural life. Examples of simple and multi-fractured structures loaded until rupture are considered. These analyses demonstrate the robustness of the proposed model. In addition, the results indicate that this formulation is accurate and can model localisation and coalescence phenomena. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Line-start permanent magnet motor (LSPMM) is a very attractive alternative to replace induction motors due to its very high efficiency and constant speed operation with load variations. However, designing this kind of hybrid motor is hard work and requires a good understanding of motor behavior. The calculation of load angle is an important step in motor design and can not be neglected. This paper uses the finite element method to show a simple methodology to calculate the load angle of a three-phase LSPMM combining the dynamic and steady-state simulations. The methodology is used to analyze a three-phase LSPMM.
Resumo:
An alternative approach for the analysis of arbitrarily curved shells is developed in this paper based on the idea of initial deformations. By `alternative` we mean that neither differential geometry nor the concept of degeneration is invoked here to describe the shell surface. We begin with a flat reference configuration for the shell mid-surface, after which the initial (curved) geometry is mapped as a stress-free deformation from the plane position. The actual motion of the shell takes place only after this initial mapping. In contrast to classical works in the literature, this strategy enables the use of only orthogonal frames within the theory and therefore objects such as Christoffel symbols, the second fundamental form or three-dimensional degenerated solids do not enter the formulation. Furthermore, the issue of physical components of tensors does not appear. Another important aspect (but not exclusive of our scheme) is the possibility to describe exactly the initial geometry. The model is kinematically exact, encompasses finite strains in a totally consistent manner and is here discretized under the light of the finite element method (although implementation via mesh-free techniques is also possible). Assessment is made by means of several numerical simulations. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
A methodology for the computational modeling of the fatigue crack growth in pressurized shell structures, based on the finite element method and concepts of Linear Elastic Fracture Mechanics, is presented. This methodology is based on that developed by Potyondy [Potyondy D, Wawrzynek PA, Ingraffea, AR. Discrete crack growth analysis methodology for through crack in pressurized fuselage structures. Int J Numer Methods Eng 1995;38:1633-1644], which consists of using four stress intensity factors, computed from the modified crack integral method, to predict the fatigue propagation life as well as the crack trajectory, which is computed as part of the numerical simulation. Some issues not presented in the study of Potyondy are investigated herein such as the influence of the crack increment size and the number of nodes per element (4 or 9 nodes) on the simulation results by means of a fatigue crack propagation simulation of a Boeing 737 airplane fuselage. The results of this simulation are compared with experimental results and those obtained by Potyondy [1]. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The study of the early age concrete properties is becoming more important, as the thermal effects and the shrinkage, even in the first hours, could generate cracks, increasing the permeability of the structure and being able to induce problems of durability and functionality in the same ones. The detailed study of the stresses development during the construction process can be decisive to keep low the cracking levels. In this work a computational model, based on the finite element method, was implemented to simulate the early age concrete behavior and, specially, the evaluation of the cracking risk. The finite element analysis encloses the computational modeling of the following phenomena: chemical, thermal, moisture diffusion and mechanical which occur at the first days after the concrete cast. The developed software results were compared with experimental values found in the literature, demonstrating an excellent approach for all the implemented analysis.
Resumo:
A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.
Resumo:
A finite element analysis and a parametric optimization of single-axis acoustic levitators are presented. The finite element method is used to simulate a levitator consisting of a Langevin ultrasonic transducer with a plane radiating surface and a plane reflector. The transducer electrical impedance, the transducer face displacement, and the acoustic radiation potential that acts on small spheres are determined by the finite element method. The numerical electrical impedance is compared with that acquired experimentally by an impedance analyzer, and the predicted displacement is compared with that obtained by a fiber-optic vibration sensor. The numerical acoustic radiation potential is verified experimentally by placing small spheres in the levitator. The same procedure is used to optimize a levitator consisting of a curved reflector and a concave-faced transducer. The numerical results show that the acoustic radiation force in the new levitator is enhanced 604 times compared with the levitator consisting of a plane transducer and a plane reflector. The optimized levitator is able to levitate 3, 2.5-mm diameter steel spheres with a power consumption of only 0.9 W.
Resumo:
The level set method has been implemented in a computational volcanology context. New techniques are presented to solve the advection equation and the reinitialisation equation. These techniques are based upon an algorithm developed in the finite difference context, but are modified to take advantage of the robustness of the finite element method. The resulting algorithm is tested on a well documented Rayleigh–Taylor instability benchmark [19], and on an axisymmetric problem where the analytical solution is known. Finally, the algorithm is applied to a basic study of lava dome growth.
Resumo:
Modeling volcanic phenomena is complicated by free-surfaces often supporting large rheological gradients. Analytical solutions and analogue models provide explanations for fundamental characteristics of lava flows. But more sophisticated models are needed, incorporating improved physics and rheology to capture realistic events. To advance our understanding of the flow dynamics of highly viscous lava in Peléean lava dome formation, axi-symmetrical Finite Element Method (FEM) models of generic endogenous dome growth have been developed. We use a novel technique, the level-set method, which tracks a moving interface, leaving the mesh unaltered. The model equations are formulated in an Eulerian framework. In this paper we test the quality of this technique in our numerical scheme by considering existing analytical and experimental models of lava dome growth which assume a constant Newtonian viscosity. We then compare our model against analytical solutions for real lava domes extruded on Soufrière, St. Vincent, W.I. in 1979 and Mount St. Helens, USA in October 1980 using an effective viscosity. The level-set method is found to be computationally light and robust enough to model the free-surface of a growing lava dome. Also, by modeling the extruded lava with a constant pressure head this naturally results in a drop in extrusion rate with increasing dome height, which can explain lava dome growth observables more appropriately than when using a fixed extrusion rate. From the modeling point of view, the level-set method will ultimately provide an opportunity to capture more of the physics while benefiting from the numerical robustness of regular grids.
Resumo:
In this paper, a progressive asymptotic approach procedure is presented for solving the steady-state Horton-Rogers-Lapwood problem in a fluid-saturated porous medium. The Horton-Rogers-Lapwood problem possesses a bifurcation and, therefore, makes the direct use of conventional finite element methods difficult. Even if the Rayleigh number is high enough to drive the occurrence of natural convection in a fluid-saturated porous medium, the conventional methods will often produce a trivial non-convective solution. This difficulty can be overcome using the progressive asymptotic approach procedure associated with the finite element method. The method considers a series of modified Horton-Rogers-Lapwood problems in which gravity is assumed to tilt a small angle away from vertical. The main idea behind the progressive asymptotic approach procedure is that through solving a sequence of such modified problems with decreasing tilt, an accurate non-zero velocity solution to the Horton-Rogers-Lapwood problem can be obtained. This solution provides a very good initial prediction for the solution to the original Horton-Rogers-Lapwood problem so that the non-zero velocity solution can be successfully obtained when the tilted angle is set to zero. Comparison of numerical solutions with analytical ones to a benchmark problem of any rectangular geometry has demonstrated the usefulness of the present progressive asymptotic approach procedure. Finally, the procedure has been used to investigate the effect of basin shapes on natural convection of pore-fluid in a porous medium. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
We present finite element simulations of temperature gradient driven rock alteration and mineralization in fluid saturated porous rock masses. In particular, we explore the significance of production/annihilation terms in the mass balance equations and the dependence of the spatial patterns of rock alteration upon the ratio of the roll over time of large scale convection cells to the relaxation time of the chemical reactions. Special concepts such as the gradient reaction criterion or rock alteration index (RAI) are discussed in light of the present, more general theory. In order to validate the finite element simulation, we derive an analytical solution for the rock alteration index of a benchmark problem on a two-dimensional rectangular domain. Since the geometry and boundary conditions of the benchmark problem can be easily and exactly modelled, the analytical solution is also useful for validating other numerical methods, such as the finite difference method and the boundary element method, when they are used to dear with this kind of problem. Finally, the potential of the theory is illustrated by means of finite element studies related to coupled flow problems in materially homogeneous and inhomogeneous porous rock masses. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.