979 resultados para ammonia nitrogen


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton transfer across cationic hydrogen bonds involving Schiff base, ammonia and related compounds has been studied at the 4-31G level. Proton transfer characteristics are correlated to the proton affinities of the species involved. Hydrogen bond strengths of these hydrogen bonds are correlated to the differences in the proton affinity of the donor and the acceptor. Influence of a neighbouring hydrogen bond on the proton transfer from Schiff base to ammonia and Schiff base to water is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of the chemisorbed states of nitrogen on various transition metal surfaces is discussed comprehensively on the basis of the results of electron spectroscopic investigations augmented by those from other techniques such as LEED and thermal desorption. A brief discussion of the photoemission spectra of free N2, a comparison of adsorbed N2 and CO as well as of physisorption of N2 on metal surfaces is also presented. We discuss the chemisorption of N2 on the surfaces of certain metals (e.g. Ni, Fe, Ru and W) in some detail, paying considerable attention to the effect of electropositive and electronegative surface modifiers. Features of the various chemisorbed states (one or more weakly chemisorbed gamma-states, strongly chemisorbed alpha-states with bond orders between 1 and 2. and dissociative chemisorbed beta-states) on different surfaces are described and relations between them indicated. While the gamma-state could be a precursor of the alpha-state, the alpha-state could be the precursor of the beta-state and this kind of information is of direct relevance to ammonia synthesis. The nature of adsorption of N2 on the surfaces of some metals (e.g. Cr, Co) deserves further study and such investigations might as well suggest alternative catalysts for ammonia synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. During the fermentation of water-logged soil containing added substances with different carbon-nitrogen ratios, the reaction first turns slightly acid, but soon returns to the original hydrogen-ion concentration (pH 7·6). 2. The quantities of ammonia present in the medium increase up to a point, after which there is steady decrease. 3. There is nitrification only in the case of substances with narrow C/N ratios. The production of nitrate generally commences only after about a month, when the vigour of the initial fermentation has subsided and fairly large quantities of ammonia have accumulated in the medium. 4. The extent of mineralisation of nitrogen is determined chiefly by the C/N ratio, though in the cases of substances like mahua and lantana the presence of other constituents may also influence the processes. The quantities of mineralised nitrogen present in the soil system generally tend to decrease after about two months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen-doped beta-Ga2O3 nanowires (GaO NWs) were prepared by annealing the as-grown nanowires in an ammonia atmosphere. The optical properties of the nitrogen-doped GaO NWs were studied by measurements of the photoluminescence and phosphorescence decay at the temperature range between 10 and 300 K. The experimental results revealed that nitrogen doping in GaO NWs induced a novel intensive red-light emission around 1.67 eV, with a characteristic decay time around 136 mus at 77 K, much shorter than that of the blue emission (a decay time of 457 mus). The time decay and temperature-dependent luminescence spectra were calculated theoretically based on a donor-acceptor pair model, which is in excellent agreement with the experimental data. This result suggests that the observed novel red-light emission originates from the recombination of an electron trapped on a donor due to oxygen vacancies and a hole trapped on an acceptor due to nitrogen doping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a new method for large-scale production of GaMnN nanowires, by annealing manganese-gallium oxide nanowires in flowing ammonia at high temperature. Microstructure analysis indicates that the GaMnN nanowires have wurtzite GaN structure without Mn precipitates or Mn-related second phases. Magnetism evolution due to nitrogen doping in manganese-gallium oxide nanowires was evaluated by magnetic measurements. Magnetic measurement reveals that the magnetization increases with the increase of nitrogen concentration. Ferromagnetic ordering exists in the GaMnN nanowires, whose Curie temperature is above room temperature. Luminescence evolution was investigated by the cathodoluminesence measurement for a single nanowire and photoluminescence measurement in a temperature range between 10 and 300 K. Experimental results indicate that optical properties can be modulated by nitrogen doping in manganese-gallium oxide nanowires. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31-52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ammonia-treated activated carbon has been studied as a support of Ru-Ba catalyst for ammonia synthesis. It is shown that the introduction of nitrogen leads to a decrease of ammonia synthesis activity for the catalysts with a low Ba/Ru molar ratio, while no significant changes are obtained for the catalysts with a high Ba/Ru molar ratio, confirming that electronegative impurities suppress the activity in ammonia synthesis and consume part of the promoters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ammonia-oxidizing archaea (AOA) have recently been found to be potentially important in nitrogen cycling in a variety of environments, such as terrestrial soils, wastewater treatment reactors, marine waters and sediments, and especially in estuaries, where high input of anthropogenic nitrogen is often experienced. The sedimentary AOA diversity, community structure and spatial distribution in the Changjiang Estuary and the adjacent East China Sea were studied. Multivariate statistical analysis indicated that the archaeal amoA genotype communities could be clustered according to sampling transects, and the station located in an estuarine mixing zone harboured a distinct AOA community. The distribution of AOA communities correlated significantly with the gradients of surface-water salinity and sediment sorting coefficient. The spatial distribution of putative soil-related AOA in certain sampling stations indicated a strong impact of the Changjiang freshwater discharge on the marine benthic microbial ecosystem. Besides freshwater, nutrients, organic matter and suspended particles, the Changjiang Diluted Water might also contribute to the transport of terrestrial archaea into the seawater and sediments along its flow path.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Coulomb explosion of ammonia clusters induced by nanosecond laser at 532 not with an intensity of similar to 10(12) Wcm(-2) has been studied by time of flight mass spectrometry. The dominant multiply charged ions are N3+ and N2+ with kinetic energies of 110 and 50 eV respectively. The electrons generated from the multiphoton ionization are heated through inverse bremsstrahlung by the laser field when colliding with neutral or ionic particles. When their energies surpass the corresponding ionization potentials of the molecules or ions, the subsequent electron impact ionization may take place thus resulting in multi-charged nitrogen ions. Covariance analysis is made to study the possible pathways of the Coulomb explosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Blochmannia are obligately intracellular bacterial mutualists of ants of the tribe Camponotini. Blochmannia perform key nutritional functions for the host, including synthesis of several essential amino acids. We used Illumina technology to sequence the genome of Blochmannia associated with Camponotus vafer. RESULTS: Although Blochmannia vafer retains many nutritional functions, it is missing glutamine synthetase (glnA), a component of the nitrogen recycling pathway encoded by the previously sequenced B. floridanus and B. pennsylvanicus. With the exception of Ureaplasma, B. vafer is the only sequenced bacterium to date that encodes urease but lacks the ability to assimilate ammonia into glutamine or glutamate. Loss of glnA occurred in a deletion hotspot near the putative replication origin. Overall, compared to the likely gene set of their common ancestor, 31 genes are missing or eroded in B. vafer, compared to 28 in B. floridanus and four in B. pennsylvanicus. Three genes (queA, visC and yggS) show convergent loss or erosion, suggesting relaxed selection for their functions. Eight B. vafer genes contain frameshifts in homopolymeric tracts that may be corrected by transcriptional slippage. Two of these encode DNA replication proteins: dnaX, which we infer is also frameshifted in B. floridanus, and dnaG. CONCLUSIONS: Comparing the B. vafer genome with B. pennsylvanicus and B. floridanus refines the core genes shared within the mutualist group, thereby clarifying functions required across ant host species. This third genome also allows us to track gene loss and erosion in a phylogenetic context to more fully understand processes of genome reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 2-wk TLm of stepwise-acclimated Thais lapillus (L.) (>20 mm long) was 14.2–16.2%. salinity (S) at 5, 10, 15, and 20°C. The same TLm occurred at 10 °C after direct transfer of snails to the final salinity but stepwise-acclimated small snails (<20 mm) tolerated a significantly lower salinity (12.7%. S). Oxygen consumption rates () fit the allometric equation . Salinity and temperature had a significant effect on , which was highest at 30%. S and depressed at 17.5%. S and at 5°C. Ammonia excretion rates fit the allometric equation . Both salinity and temperature affected . Ammonia excretion was significantly lower at 17.5 %. S than at higher salinities at 10, 15, and 20°C, but did not vary as a function of salinity at 5°C. Primary amines were lost from snails under all conditions without any obvious relationship with temperature or salinity. Primary-amine loss, expressed as a percentage of , was significantly higher at 17.5 %. S than at higher salinities. Oxygen : nitrogen ratios ranged from 4.2–15.6, indicating protein was the primary metabolic substrate, and were highest at 15 °C and lowest at 5 °C. Snails withstood 89 days starvation without mortality at 10°C. Oxygen consumption of snails declined by 28% during starvation due to a 37% decline in dry weight; consequently, weight-specific respiration rate increased by 17%. The intercept (a) for the allometric equations did not change during starvation. Ammonia excretion increased during starvation, and primary-amine loss increased until Day 21, then declined. Oxygen: nitrogen ratios declined from 14 to 8, indicating an increased catabolism of protein during starvation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of experiments recorded by Bayne & Scullard (1977) confirmed earlier studies (Bayne, 1973) in describing a decline in the rate of oxygen uptake (Vo2) by Mytilus edulis during starvation, eventually reaching a steady-state value, called the standard rate of oxygen consumption. Earlier experiments had also shown that if such starved mussels were fed, oxygen uptake increased rapidly to a high level called the active rate of oxygen consumption (Thompson & Bayne, 1972; Bayne, Thompson & Widdows, 1973). Some of this increase in metabolic rate is undoubtedly due to an increased filtration rate that is stimulated by the presence of food (the ‘mechanical cost of feeding’ discussed by Bayne et al. 1976), and part is due to the ‘physiological costs of feeding’, which includes energy utilized in digestion and assimilation of the food, and energy that is lost during deamination and other catabolic processes that accompany digestion (Warren & Davis, 1967). Increases in metabolic rate associated with feeding have been called the specific dynamic action (SDA) of the ration (see Harper, 1971, for a discussion) or the apparent SDA (Beamish, 1974)5 and they have been related to aspects of protein metabolism (Krebs, 1964). This paper describes the results of some experiments designed to examine the relationships between SDA and ammonia excretion in Mytilus edulis L.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification influences sediment/water nitrogen fluxes, possibly by impacting on the microbial process of ammonia oxidation. To investigate this further, undisturbed sediment cores collected from Ny Alesund harbour (Svalbard) were incubated with seawater adjusted to CO2 concentrations of 380, 540, 760, 1,120 and 3,000 μatm. DNA and RNA were extracted from the sediment surface after 14 days' exposure and the abundance of bacterial and archaeal ammonia oxidising (amoA) genes and transcripts quantified using quantitative polymerase chain reaction. While there was no change to the abundance of bacterial amoA genes, an increase to 760 μatm pCO2 reduced the abundance of bacterial amoA transcripts by 65 %, and this was accompanied by a shift in the composition of the active community. In contrast, archaeal amoA gene and transcript abundance both doubled at 3,000 μatm, with an increase in species richness also apparent. This suggests that ammonia oxidising bacteria and archaea in marine sediments have different pH optima, and the impact of elevated CO2 on N cycling may be dependent on the relative abundances of these two major microbial groups. Further evidence of a shift in the balance of key N cycling groups was also evident: the abundance of nirS-type denitrifier transcripts decreased alongside bacterial amoA transcripts, indicating that NO3 − produced by bacterial nitrification fuelled denitrification. An increase in the abundance of Planctomycete-specific 16S rRNA, the vastmajority of which grouped with known anammox bacteria, was also apparent at 3,000 μatm pCO2. This could indicate a possible shift from coupled nitrification–denitrification to anammox activity at elevated CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments.