913 resultados para alta risoluzione Trentino Alto Adige data-set climatologia temperatura giornaliera orografia complessa


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In analysis of longitudinal data, the variance matrix of the parameter estimates is usually estimated by the 'sandwich' method, in which the variance for each subject is estimated by its residual products. We propose smooth bootstrap methods by perturbing the estimating functions to obtain 'bootstrapped' realizations of the parameter estimates for statistical inference. Our extensive simulation studies indicate that the variance estimators by our proposed methods can not only correct the bias of the sandwich estimator but also improve the confidence interval coverage. We applied the proposed method to a data set from a clinical trial of antibiotics for leprosy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the analysis of longitudinal data when the covariance function is modeled by additional parameters to the mean parameters. In general, inconsistent estimators of the covariance (variance/correlation) parameters will be produced when the "working" correlation matrix is misspecified, which may result in great loss of efficiency of the mean parameter estimators (albeit the consistency is preserved). We consider using different "Working" correlation models for the variance and the mean parameters. In particular, we find that an independence working model should be used for estimating the variance parameters to ensure their consistency in case the correlation structure is misspecified. The designated "working" correlation matrices should be used for estimating the mean and the correlation parameters to attain high efficiency for estimating the mean parameters. Simulation studies indicate that the proposed algorithm performs very well. We also applied different estimation procedures to a data set from a clinical trial for illustration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The approach of generalized estimating equations (GEE) is based on the framework of generalized linear models but allows for specification of a working matrix for modeling within-subject correlations. The variance is often assumed to be a known function of the mean. This article investigates the impacts of misspecifying the variance function on estimators of the mean parameters for quantitative responses. Our numerical studies indicate that (1) correct specification of the variance function can improve the estimation efficiency even if the correlation structure is misspecified; (2) misspecification of the variance function impacts much more on estimators for within-cluster covariates than for cluster-level covariates; and (3) if the variance function is misspecified, correct choice of the correlation structure may not necessarily improve estimation efficiency. We illustrate impacts of different variance functions using a real data set from cow growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To facilitate marketing and export, the Australian macadamia industry requires accurate crop forecasts. Each year, two levels of crop predictions are produced for this industry. The first is an overall longer-term forecast based on tree census data of growers in the Australian Macadamia Society (AMS). This data set currently accounts for around 70% of total production, and is supplemented by our best estimates of non-AMS orchards. Given these total tree numbers, average yields per tree are needed to complete the long-term forecasts. Yields from regional variety trials were initially used, but were found to be consistently higher than the average yields that growers were obtaining. Hence, a statistical model was developed using growers' historical yields, also taken from the AMS database. This model accounted for the effects of tree age, variety, year, region and tree spacing, and explained 65% of the total variation in the yield per tree data. The second level of crop prediction is an annual climate adjustment of these overall long-term estimates, taking into account the expected effects on production of the previous year's climate. This adjustment is based on relative historical yields, measured as the percentage deviance between expected and actual production. The dominant climatic variables are observed temperature, evaporation, solar radiation and modelled water stress. Initially, a number of alternate statistical models showed good agreement within the historical data, with jack-knife cross-validation R2 values of 96% or better. However, forecasts varied quite widely between these alternate models. Exploratory multivariate analyses and nearest-neighbour methods were used to investigate these differences. For 2001-2003, the overall forecasts were in the right direction (when compared with the long-term expected values), but were over-estimates. In 2004 the forecast was well under the observed production, and in 2005 the revised models produced a forecast within 5.1% of the actual production. Over the first five years of forecasting, the absolute deviance for the climate-adjustment models averaged 10.1%, just outside the targeted objective of 10%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computationally efficient agglomerative clustering algorithm based on multilevel theory is presented. Here, the data set is divided randomly into a number of partitions. The samples of each such partition are clustered separately using hierarchical agglomerative clustering algorithm to form sub-clusters. These are merged at higher levels to get the final classification. This algorithm leads to the same classification as that of hierarchical agglomerative clustering algorithm when the clusters are well separated. The advantages of this algorithm are short run time and small storage requirement. It is observed that the savings, in storage space and computation time, increase nonlinearly with the sample size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was performed to investigate the value of near infrared reflectance spectroscopy (NIRS) as an alternate method to analytical techniques for identifying QTL associated with feed quality traits. Milled samples from an F6-derived recombinant inbred Tallon/Scarlett population were incubated in the rumen of fistulated cattle, recovered, washed and dried to determine the in-situ dry matter digestibility (DMD). Both pre- and post-digestion samples were analysed using NIRS to quantify key quality components relating to acid detergent fibre, starch and protein. This phenotypic data was used to identify trait associated QTL and compare them to previously identified QTL. Though a number of genetic correlations were identified between the phenotypic data sets, the only correlation of most interest was between DMD and starch digested (r = -0.382). The significance of this genetic correlation was that the NIRS data set identified a putative QTL on chromosomes 7H (LOD = 3.3) associated with starch digested. A QTL for DMD occurred in the same region of chromosome 7H, with flanking markers fAG/CAT63 and bPb-0758. The significant correlation and identification of this putative QTL, highlights the potential of technologies like NIRS in QTL analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A central tenet in the theory of reliability modelling is the quantification of the probability of asset failure. In general, reliability depends on asset age and the maintenance policy applied. Usually, failure and maintenance times are the primary inputs to reliability models. However, for many organisations, different aspects of these data are often recorded in different databases (e.g. work order notifications, event logs, condition monitoring data, and process control data). These recorded data cannot be interpreted individually, since they typically do not have all the information necessary to ascertain failure and preventive maintenance times. This paper presents a methodology for the extraction of failure and preventive maintenance times using commonly-available, real-world data sources. A text-mining approach is employed to extract keywords indicative of the source of the maintenance event. Using these keywords, a Naïve Bayes classifier is then applied to attribute each machine stoppage to one of two classes: failure or preventive. The accuracy of the algorithm is assessed and the classified failure time data are then presented. The applicability of the methodology is demonstrated on a maintenance data set from an Australian electricity company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has long been thought that tropical rainfall retrievals from satellites have large errors. Here we show, using a new daily 1 degree gridded rainfall data set based on about 1800 gauges from the India Meteorology Department (IMD), that modern satellite estimates are reasonably close to observed rainfall over the Indian monsoon region. Daily satellite rainfalls from the Global Precipitation Climatology Project (GPCP 1DD) and the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) are available since 1998. The high summer monsoon (June-September) rain over the Western Ghats and Himalayan foothills is captured in TMPA data. Away from hilly regions, the seasonal mean and intraseasonal variability of rainfall (averaged over regions of a few hundred kilometers linear dimension) from both satellite products are about 15% of observations. Satellite data generally underestimate both the mean and variability of rain, but the phase of intraseasonal variations is accurate. On synoptic timescales, TMPA gives reasonable depiction of the pattern and intensity of torrential rain from individual monsoon low-pressure systems and depressions. A pronounced biennial oscillation of seasonal total central India rain is seen in all three data sets, with GPCP 1DD being closest to IMD observations. The new satellite data are a promising resource for the study of tropical rainfall variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key trait of Free and Open Source Software (FOSS) development is its distributed nature. Nevertheless, two project-level operations, the fork and the merge of program code, are among the least well understood events in the lifespan of a FOSS project. Some projects have explicitly adopted these operations as the primary means of concurrent development. In this study, we examine the effect of highly distributed software development, is found in the Linux kernel project, on collection and modelling of software development data. We find that distributed development calls for sophisticated temporal modelling techniques where several versions of the source code tree can exist at once. Attention must be turned towards the methods of quality assurance and peer review that projects employ to manage these parallel source trees. Our analysis indicates that two new metrics, fork rate and merge rate, could be useful for determining the role of distributed version control systems in FOSS projects. The study presents a preliminary data set consisting of version control and mailing list data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key trait of Free and Open Source Software (FOSS) development is its distributed nature. Nevertheless, two project-level operations, the fork and the merge of program code, are among the least well understood events in the lifespan of a FOSS project. Some projects have explicitly adopted these operations as the primary means of concurrent development. In this study, we examine the effect of highly distributed software development, is found in the Linux kernel project, on collection and modelling of software development data. We find that distributed development calls for sophisticated temporal modelling techniques where several versions of the source code tree can exist at once. Attention must be turned towards the methods of quality assurance and peer review that projects employ to manage these parallel source trees. Our analysis indicates that two new metrics, fork rate and merge rate, could be useful for determining the role of distributed version control systems in FOSS projects. The study presents a preliminary data set consisting of version control and mailing list data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, I study the changing ladscape and human environment of the Mätäjoki Valley, West-Helsinki, using reconstructions and predictive modelling. The study is a part of a larger project funded by the city of Helsinki aming to map the past of the Mätäjoki Valley. The changes in landscape from an archipelago in the Ancylus Lake to a river valley are studied from 10000 to 2000 years ago. Alongside shore displacement, we look at the changing environment from human perspective and predict the location of dwelling sitesat various times. As a result, two map series were produced that show how the landscape changed and where inhabitance is predicted. To back them up, we have also looked at what previous research says about the history of the waterways, climate, vegetation and archaeology. The changing landscape of the river valley is reconstructed using GIS methods. For this purpose, new laser point data set was used and at the same time tested in the context landscape modelling. Dwelling sites were modeled with logistic regression analysis. The spatial predictive model combines data on the locations of the known dwelling sites, environmental factors and shore displacement data. The predictions were visualised into raster maps that show the predictions for inhabitance 3000 and 5000 years ago. The aim of these maps was to help archaeologists map potential spots for human activity. The produced landscape reconstructions clarified previous shore displacement studies of the Mätäjoki region and provided new information on the location of shoreline. From the shore displacement history of the Mätäjoki Valley arise the following stages: 1. The northernmost hills of the Mätäjoki Valley rose from Ancylus Lake approximately 10000 years ago. Shore displacement was fast during the following thousand years. 2. The area was an archipelago with a relatively steady shoreline 9000 7000 years ago. 8000 years ago the shoreline drew back in the middle and southern parts of the river valley because of the transgression of the Litorina Sea. 3. Mätäjoki was a sheltered bay of the Litorina Sea 6000 5000 years ago. The Vantaanjoki River started to flow into the Mätäjoki Valley approximately 5000 years ago. 4. The sediment plains in the southern part of the river valley rose from the sea rather quickly 5000 3000 years ago. Salt water still pushed its way into the southermost part of the valley 4000 years ago. 5. The shoreline proceeded to Pitäjänmäki rapids where it stayed at least a thousand years 3000 2000 years ago. The predictive models managed to predict the locations of dwelling sites moderately well. The most accurate predictions were found on the eastern shore and Malminkartano area. Of the environment variables sand and aspect of slope were found to have the best predictive power. From the results of this study we can conclude that the Mätäjoki Valley has been a favorable location to live especially 6000 5000 years ago when the climate was mild and vegetation lush. The laser point data set used here works best in shore displacement studies located in rural areas or if further specific palaeogeographic or hydrologic analysis in the research area is not needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a variation density function that profiles the relationship between multiple scalar fields over isosurfaces of a given scalar field. This profile serves as a valuable tool for multifield data exploration because it provides the user with cues to identify interesting isovalues of scalar fields. Existing isosurface-based techniques for scalar data exploration like Reeb graphs, contour spectra, isosurface statistics, etc., study a scalar field in isolation. We argue that the identification of interesting isovalues in a multifield data set should necessarily be based on the interaction between the different fields. We demonstrate the effectiveness of our approach by applying it to explore data from a wide variety of applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Filtering methods are explored for removing noise from data while preserving sharp edges that many indicate a trend shift in gas turbine measurements. Linear filters are found to be have problems with removing noise while preserving features in the signal. The nonlinear hybrid median filter is found to accurately reproduce the root signal from noisy data. Simulated faulty data and fault-free gas path measurement data are passed through median filters and health residuals for the data set are created. The health residual is a scalar norm of the gas path measurement deltas and is used to partition the faulty engine from the healthy engine using fuzzy sets. The fuzzy detection system is developed and tested with noisy data and with filtered data. It is found from tests with simulated fault-free and faulty data that fuzzy trend shift detection based on filtered data is very accurate with no false alarms and negligible missed alarms.