938 resultados para agricultural residues
Resumo:
In this study, we investigated the impact of rainfall on runoff, soil erosion and consequently on the discharge of radioactive cesium in agricultural fields in Fukushima prefecture using a rainfall simulator. Simulated heavy rainfalls (50 mm h-1) generated significant runoff and soil erosion. The average concentration of radioactive cesium (the sum of 134Cs and 137Cs) in the runoff sediments was [similar]3500 Bq kg-1 dry soil, more than double the concentrations measured in the field soils which should be considered in studies using the 137Cs loss to estimate long-term soil erosion. However, the estimated mass of cesium discharged through one runoff event was less than 2% of the cesium inventory in the field. This suggested that cesium discharge via soil erosion is not a significant factor in reducing the radioactivity of contaminated soils in Fukushima prefecture. However, the eroded sediment carrying radioactive cesium will deposit into the river systems and potentially pose a radioactivity risk for aquatic living organisms.
Resumo:
As there are a myriad of micro organic pollutants that can affect the well-being of human and other organisms in the environment the need for an effective monitoring tool is eminent. Passive sampling techniques, which have been developed over the last decades, could provide several advantages to the conventional sampling methods including simpler sampling devices, more cost-effective sampling campaign, providing time-integrated load as well as representative average of concentrations of pollutants in the environment. Those techniques have been applied to monitor many pollutants caused by agricultural activities, i.e. residues of pesticides, veterinary drugs and so on. Several types of passive samplers are commercially available and their uses are widely accepted. However, not many applications of those techniques have been found in Japan, especially in the field of agricultural environment. This paper aims to introduce the field of passive sampling and then to describe some applications of passive sampling techniques in environmental monitoring studies related to the agriculture industry.
Resumo:
The stability of five illicit drug markers in wastewater was tested under different sewer conditions using laboratory-scale sewer reactors. Wastewater was spiked with deuterium labelled isotopes of cocaine, benzoyl ecgonine, methamphetamine, MDMA and 6-acetyl morphine to avoid interference from the native isotopes already present in the wastewater matrix. The sewer reactors were operated at 20 °C and pH 7.5, and wastewater was sampled at 0, 0.25, 0.5, 1, 2, 3, 6, 9 and 12 h to measure the transformation/degradation of these marker compounds. The results showed that while methamphetamine, MDMA and benzoyl ecgonine were stable in the sewer reactors, cocaine and 6-acetyl morphine degraded quickly. Their degradation rates are significantly higher than the values reportedly measured in wastewater alone (without biofilms). All the degradation processes followed first order kinetics. Benzoyl ecgonine and morphine were also formed from the degradation of cocaine and 6-acetyl morphine, respectively, with stable formation rates throughout the test. These findings suggest that, in sewage epidemiology, it is essential to have relevant information of the sewer system (i.e. type of sewer, hydraulic retention time) in order to accurately back-estimate the consumption of illicit drugs. More research is required to look into detailed sewer conditions (e.g. temperature, pH and ratio of biofilm area to wastewater volume among others) to identify their effects on the fate of illicit drug markers in sewer systems.
Resumo:
There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ
Resumo:
Five stereochemically constrained analogs of the chemotactic tripeptide incorporating 1-aminocycloalkane-1-carboxylic acid (Ac(n)c) and alpha,alpha-dialkylglycines (Deg, diethylglycine; Dpg, n,n-dipropylglycine and Dbg, n,n-dibutylglycine) at position 2 have been synthesized. NMR studies of peptides For-Met-Xxx-Phe-OMe (Xxx = Ac(7)c, I; Ac(8)c, II; Deg, III; Dpg, IV and Dbg, V; For, formyl) establish that peptides with cycloalkyl residues, I and II, adopt folded beta-turn conformations in CDCl3 and (CD3)(2)SO. In contrast, analogs with linear alkyl sidechains, III-V, favour fully extended (C-5) conformations in solution. Peptides I-V exhibit high activity in inducing beta-glucosaminidase release from rabbit neutrophils, with ED(50) values ranging from 1.4-8.0 x 10(-11)M. In human neutrophils the Dxg peptides III-V have ED(50) values ranging from 2.3 x 10(-8) to 5.9 x 10(-10) M, with the activity order being V > IV > III. While peptides I-IV are less active than the parent. For-Met-Leu-Phe-OH, in stimulating histamine release from human basophils, the Dbg peptide V is appreciably more potent, suggesting its potential utility as a probe for formyl peptide receptors.
Resumo:
Australian farmers have used precision agriculture technology for many years with the use of ground – based and satellite systems. However, these systems require the use of vehicles in order to analyse a wide area which can be time consuming and cost ineffective. Also, satellite imagery may not be accurate for analysis. Low cost of Unmanned Aerial Vehicles (UAV) present an effective method of analysing large plots of agricultural fields. As the UAV can travel over long distances and fly over multiple plots, it allows for more data to be captured by a sampling device such as a multispectral camera and analysed thereafter. This would allow farmers to analyse the health of their crops and thus focus their efforts on certain areas which may need attention. This project evaluates a multispectral camera for use on a UAV for agricultural applications.
Resumo:
A large part of the rural people of developing countries use traditional biomass stoves to meet their cooking and heating energy demands. These stoves possess very low thermal efficiency; besides, most of them cannot handle agricultural wastes. Thus, there is a need to develop an alternate cooking contrivance which is simple, efficient and can handle a range of biomass including agricultural wastes. In this reported work, a highly densified solid fuel block using a range of low cost agro residues has been developed to meet the cooking and heating needs. A strategy was adopted to determine the best suitable raw materials, which was optimized in terms of cost and performance. Several experiments were conducted using solid fuel block which was manufactured using various raw materials in different proportions; it was found that fuel block composed of 40% biomass, 40% charcoal powder, 15% binder and 5% oxidizer fulfilled the requirement. Based on this finding, fuel blocks of two different configurations viz. cylindrical shape with single and multi-holes (3, 6, 9 and 13) were constructed and its performance was evaluated. For instance, the 13 hole solid fuel block met the requirement of domestic cooking; the mean thermal power was 1.6 kWth with a burn time of 1.5 h. Furthermore, the maximum thermal efficiency recorded for this particular design was 58%. Whereas, the power level of single hole solid fuel block was found to be lower but adequate for barbecue cooking application.
Resumo:
Biomethanation of herbaceous biomass feedstock has the potential to provide clean energy source for cooking and other activities in areas where such biomass availability predominates. A biomethanation concept that involves fermentation of biomass residues in three steps, occurring in three zones of the fermentor is described. This approach while attempting take advantage of multistage reactors simplifies the reactor operation and obviates the need for a high degree of process control or complex reactor design. Typical herbaceous biomass decompose with a rapid VFA flux initially (with a tendency to float) followed by a slower decomposition showing balanced process of VFA generation and its utilization by methanogens that colonize biomass slowly. The tendency to float at the initial stages is suppressed by allowing previous days feed to hold it below digester liquid which permits VFA to disperse into the digester liquid without causing process inhibition. This approach has been used to build and operate simple biomass digesters to provide cooking gas in rural areas with weed and agro-residues. With appropriate modifications, the same concept has been used for digesting municipal solid wastes in small towns where large fermentors are not viable. With further modifications this concept has been used for solid-liquid feed fermentors. Methanogen colonized leaf biomass has been used as biofilm support to treat coffee processing wastewater as well as crop litter alternately in a year. During summer it functions as a biomass based biogas plants operating in the three-zone mode while in winter, feeding biomass is suspended and high strength coffee processing wastewater is let into the fermentor achieving over 90% BOD reduction. The early field experience of these fermentors is presented.
Resumo:
Gelonin inhibits protein synthesis by inactivating the eukaryotic 60 S ribosomal subunit by an unknown mechanism. The protein was purified in high yield by a new method using Cibacron blue F3GA-Sepharose. Chemical modification studies reveal that arginine residues are essential for biological activity.
Resumo:
The role of interaction between Asn259 (catalytic domain) with Gln821 (C-terminal domain) in PeptidaseN was investigated. The k(cat) of PeptidaseN containing Asn259Asp or Gln821Glu is enhanced whereas it is suppressed in Asn259AspGln821Glu. Structural analysis shows this interaction to change the relative disposition of active site residues, which modulates catalytic activity.
Resumo:
Consumer risk assessment is a crucial step in the regulatory approval of pesticide use on food crops. Recently, an additional hurdle has been added to the formal consumer risk assessment process with the introduction of short-term intake or exposure assessment and a comparable short-term toxicity reference, the acute reference dose. Exposure to residues during one meal or over one day is important for short-term or acute intake. Exposure in the short term can be substantially higher than average because the consumption of a food on a single occasion can be very large compared with typical long-term or mean consumption and the food may have a much larger residue than average. Furthermore, the residue level in a single unit of a fruit or vegetable may be higher by a factor (defined as the variability factor, which we have shown to be typically ×3 for the 97.5th percentile unit) than the average residue in the lot. Available marketplace data and supervised residue trial data are examined in an investigation of the variability of residues in units of fruit and vegetables. A method is described for estimating the 97.5th percentile value from sets of unit residue data. Variability appears to be generally independent of the pesticide, the crop, crop unit size and the residue level. The deposition of pesticide on the individual unit during application is probably the most significant factor. The diets used in the calculations ideally come from individual and household surveys with enough consumers of each specific food to determine large portion sizes. The diets should distinguish the different forms of a food consumed, eg canned, frozen or fresh, because the residue levels associated with the different forms may be quite different. Dietary intakes may be calculated by a deterministic method or a probabilistic method. In the deterministic method the intake is estimated with the assumptions of large portion consumption of a ‘high residue’ food (high residue in the sense that the pesticide was used at the highest recommended label rate, the crop was harvested at the smallest interval after treatment and the residue in the edible portion was the highest found in any of the supervised trials in line with these use conditions). The deterministic calculation also includes a variability factor for those foods consumed as units (eg apples, carrots) to allow for the elevated residue in some single units which may not be seen in composited samples. In the probabilistic method the distribution of dietary consumption and the distribution of possible residues are combined in repeated probabilistic calculations to yield a distribution of possible residue intakes. Additional information such as percentage commodity treated and combination of residues from multiple commodities may be incorporated into probabilistic calculations. The IUPAC Advisory Committee on Crop Protection Chemistry has made 11 recommendations relating to acute dietary exposure.
Resumo:
A room-temperature cathodic electrolytic process was developed in the laboratory to recover zinc from industrial leach residues. The various parameters affecting the electroleaching process were studied using a statistically designed experiment. To understand the mechanisms behind the electrode processes, cyclic voltammetry and galvanostatic studies were carried out. The role of Einh measurements in monitoring such an electroleaching procedure is also shown. Since significant amounts of iron were also present in the leach liquor, attempts were made to purify it before zinc recovery by electrowinning. Reductive dissolution and creation of anion vacancies were found to be responsible for the dissolution of zinc ferrite present in the leach residue. A flow sheet of the process is given.
Resumo:
The caseins (αs1, αs2, β, and κ) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1–44) of bovine κ-casein, the protein which maintains the micellar structure of the caseins. κ-Casein (1–44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro8 to Arg34. This is the first report which demonstrates extensive secondary structure within the casein class of proteins.
Resumo:
Background: Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the information generated by DArT with previous data produced with gel-based marker technologies. The goal of this study was to build a high-density consensus linkage map from the combined datasets of ten populations, most of which were simultaneously typed with DArT and Simple Sequence Repeat (SSR), Restriction Enzyme Fragment Polymorphism (RFLP) and/or Sequence Tagged Site (STS) markers. Results: The consensus map, built using a combination of JoinMap 3.0 software and several purpose-built perl scripts, comprised 2,935 loci (2,085 DArT, 850 other loci) and spanned 1,161 cM. It contained a total of 1,629 'bins' (unique loci), with an average inter-bin distance of 0.7 ± 1.0 cM (median = 0.3 cM). More than 98% of the map could be covered with a single DArT assay. The arrangement of loci was very similar to, and almost as optimal as, the arrangement of loci in component maps built for individual populations. The locus order of a synthetic map derived from merging the component maps without considering the segregation data was only slightly inferior. The distribution of loci along chromosomes indicated centromeric suppression of recombination in all chromosomes except 5H. DArT markers appeared to have a moderate tendency toward hypomethylated, gene-rich regions in distal chromosome areas. On the average, 14 ± 9 DArT loci were identified within 5 cM on either side of SSR, RFLP or STS loci previously identified as linked to agricultural traits. Conclusion: Our barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes. The study also highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations.
Resumo:
To remain competitive, many agricultural systems are now being run along business lines. Systems methodologies are being incorporated, and here evolutionary computation is a valuable tool for identifying more profitable or sustainable solutions. However, agricultural models typically pose some of the more challenging problems for optimisation. This chapter outlines these problems, and then presents a series of three case studies demonstrating how they can be overcome in practice. Firstly, increasingly complex models of Australian livestock enterprises show that evolutionary computation is the only viable optimisation method for these large and difficult problems. On-going research is taking a notably efficient and robust variant, differential evolution, out into real-world systems. Next, models of cropping systems in Australia demonstrate the challenge of dealing with competing objectives, namely maximising farm profit whilst minimising resource degradation. Pareto methods are used to illustrate this trade-off, and these results have proved to be most useful for farm managers in this industry. Finally, land-use planning in the Netherlands demonstrates the size and spatial complexity of real-world problems. Here, GIS-based optimisation techniques are integrated with Pareto methods, producing better solutions which were acceptable to the competing organizations. These three studies all show that evolutionary computation remains the only feasible method for the optimisation of large, complex agricultural problems. An extra benefit is that the resultant population of candidate solutions illustrates trade-offs, and this leads to more informed discussions and better education of the industry decision-makers.