994 resultados para adult tissues
Resumo:
Previous studies have implicated the bcl-2 protooncogene as a potential regulator of neuronal survival. However, mice lacking functional bcl-2 exhibited normal development and maintenance of the central nervous system (CNS). Since bcl-2 appears dispensable for neuronal survival, we have examined the expression and function of bcl-x, another member of the bcl-2 family of death regulatory genes. Bcl-2 is expressed in neuronal tissues during embryonic development but is down-regulated in the adult CNS. In contrast, Bcl-xL expression is retained in neurons of the adult CNS. Two different forms of bcl-x mRNA and their corresponding products, Bcl-xL and Bcl-x beta, were expressed in embryonic and adult neurons of the CNS. Microinjection of bcl-xL and bcl-x beta cDNAs into primary sympathetic neurons inhibited their death induced by nerve growth factor withdrawal. Thus, Bcl-x proteins appear to play an important role in the regulation of neuronal survival in the adult CNS.
Resumo:
The Drosophila melanogaster genome contains only one CPT1 gene (Jackson, V. N., Cameron, J. M., Zammit, V. A., and Price, N. T. (1999) Biochem. J. 341, 483-489). We have now extended our original observation to all insect genomes that have been sequenced, suggesting that a single CPT1 gene is a universal feature of insect genomes. We hypothesized that insects may be able to generate kinetically distinct variants by alternative splicing of their single CPT1 gene. Analysis of the insect genomes revealed that (a) the single CPT1 gene in each and every insect genome contains two alternative exons and (ii) in all cases, the putative alternative splicing site occurs within a small region corresponding to 21 amino acid residues that are known to be essential for the binding of substrates and of malonyl-CoA in mammalian CPT1A.Weperformed PCR analyses of mRNA from different Drosophila tissues; both of the anticipated splice variants of CPT1mRNAwere found to be expressed in all of the tissues tested (both in larvae and adults), with the expression level for one of the splice variants being significantly different between flight muscle and the fat body of adult Drosophila. Heterologous expression of the full-length cDNAs corresponding to the two putative variants of Drosophila CPT1 in the yeast Pichia pastoris revealed two important differences between the properties of the two variants: (i) their affinity (K 0.5) for one of the substrates, palmitoyl-CoA, differed by 5-fold, and (ii) the sensitivity to inhibition by malonyl-CoA at fixed, higher palmitoyl-CoA concentrations was 2-fold different and associated with different kinetics of inhibition. These data indicate that alternative splicing that specifically affects a structurally crucial region of the protein is an important mechanism through which functional diversity of CPT1 kinetics is generated from the single gene that occurs in insects. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Tissue engineering of biomimetic skeletal muscle may lead to development of new therapies for myogenic repair and generation of improved in vitro models for studies of muscle function, regeneration, and disease. For the optimal therapeutic and in vitro results, engineered muscle should recreate the force-generating and regenerative capacities of native muscle, enabled respectively by its two main cellular constituents, the mature myofibers and satellite cells (SCs). Still, after 20 years of research, engineered muscle tissues fall short of mimicking contractile function and self-repair capacity of native skeletal muscle. To overcome this limitation, we set the thesis goals to: 1) generate a highly functional, self-regenerative engineered skeletal muscle and 2) explore mechanisms governing its formation and regeneration in vitro and survival and vascularization in vivo.
By studying myogenic progenitors isolated from neonatal rats, we first discovered advantages of using an adherent cell fraction for engineering of skeletal muscles with robust structure and function and the formation of a SC pool. Specifically, when synergized with dynamic culture conditions, the use of adherent cells yielded muscle constructs capable of replicating the contractile output of native neonatal muscle, generating >40 mN/mm2 of specific force. Moreover, tissue structure and cellular heterogeneity of engineered muscle constructs closely resembled those of native muscle, consisting of aligned, striated myofibers embedded in a matrix of basal lamina proteins and SCs that resided in native-like niches. Importantly, we identified rapid formation of myofibers early during engineered muscle culture as a critical condition leading to SC homing and conversion to a quiescent, non-proliferative state. The SCs retained natural regenerative capacity and activated, proliferated, and differentiated to rebuild damaged myofibers and recover contractile function within 10 days after the muscle was injured by cardiotoxin (CTX). The resulting regenerative response was directly dependent on the abundance of SCs in the engineered muscle that we varied by expanding starting cell population under different levels of basic fibroblast growth factor (bFGF), an inhibitor of myogenic differentiation. Using a dorsal skinfold window chamber model in nude mice, we further demonstrated that within 2 weeks after implantation, initially avascular engineered muscle underwent robust vascularization and perfusion and exhibited improved structure and contractile function beyond what was achievable in vitro.
To enhance translational value of our approach, we transitioned to use of adult rat myogenic cells, but found that despite similar function to that of neonatal constructs, adult-derived muscle lacked regenerative capacity. Using a novel platform for live monitoring of calcium transients during construct culture, we rapidly screened for potential enhancers of regeneration to establish that many known pro-regenerative soluble factors were ineffective in stimulating in vitro engineered muscle recovery from CTX injury. This led us to introduce bone marrow-derived macrophages (BMDMs), an established non-myogenic contributor to muscle repair, to the adult-derived constructs and to demonstrate remarkable recovery of force generation (>80%) and muscle mass (>70%) following CTX injury. Mechanistically, while similar patterns of early SC activation and proliferation upon injury were observed in engineered muscles with and without BMDMs, a significant decrease in injury-induced apoptosis occurred only in the presence of BMDMs. The importance of preventing apoptosis was further demonstrated by showing that application of caspase inhibitor (Q-VD-OPh) yielded myofiber regrowth and functional recovery post-injury. Gene expression analysis suggested muscle-secreted tumor necrosis factor-α (TNFα) as a potential inducer of apoptosis as common for muscle degeneration in diseases and aging in vivo. Finally, we showed that BMDM incorporation in engineered muscle enhanced its growth, angiogenesis, and function following implantation in the dorsal window chambers in nude mice.
In summary, this thesis describes novel strategies to engineer highly contractile and regenerative skeletal muscle tissues starting from neonatal or adult rat myogenic cells. We find that age-dependent differences of myogenic cells distinctly affect the self-repair capacity but not contractile function of engineered muscle. Adult, but not neonatal, myogenic progenitors appear to require co-culture with other cells, such as bone marrow-derived macrophages, to allow robust muscle regeneration in vitro and rapid vascularization in vivo. Regarding the established roles of immune system cells in the repair of various muscle and non-muscle tissues, we expect that our work will stimulate the future applications of immune cells as pro-regenerative or anti-inflammatory constituents of engineered tissue grafts. Furthermore, we expect that rodent studies in this thesis will inspire successful engineering of biomimetic human muscle tissues for use in regenerative therapy and drug discovery applications.
Resumo:
We examine whether feeding pregnant and lactating rats hydrogenated fats rich in trans fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 90-day-old offspring. Pregnant and lactating Wistar rats were fed with either a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). Upon weaning, the male pups were sorted into four groups: CC, mothers were receiving C and pups were kept on C; CT, mothers were receiving C and pups were fed with T; TT, mothers were receiving T and pups were kept on T; TC, mothers were receiving T and pups were fed with C. Pups' food intake and body weight were quantified weekly and the pups were killed at day 90 of life by decapitation. Blood and carcass as well as retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Food intake and body weight were lower in TC and TT, and metabolic efficiency was reduced in TT. Offspring of TT and TC rats had increased white adipose tissue PAI-1 gene expression. Insulin receptor was higher in TT than other groups. Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation could promote deleterious consequences, even after the withdrawal of the causal factor.
Resumo:
Cancer remains an undetermined question for modern medicine. Every year millions of people ranging from children to adult die since the modern treatment is unable to meet the challenge. Research must continue in the area of new biomarkers for tumors. Molecular biology has evolved during last years; however, this knowledge has not been applied into the medicine. Biological findings should be used to improve diagnostics and treatment modalities. In this thesis, human formalin-fixed paraffin embedded colorectal and breast cancer samples were used to optimize the double immunofluorescence staining protocol. Also, immunohistochemistry was performed in order to visualize expression patterns of each biomarker. Concerning double immunofluorescence, feasibility of primary antibodies raised in different and same host species was also tested. Finally, established methods for simultaneous multicolor immunofluorescence imaging of formalin-fixed paraffin embedded specimens were applied for the detection of pairs of potential biomarkers of colorectal cancer (EGFR, pmTOR, pAKT, Vimentin, Cytokeratin Pan, Ezrin, E-cadherin) and breast cancer (Securin, PTTG1IP, Cleaved caspase 3, ki67).
Resumo:
Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.
Resumo:
Chronic and systemic treatment of rodents with rotenone, a classical inhibitor of mitochondrial respiratory complex I, results in neurochemical, behavioral, and neuropathological features of Parkinson's disease. The aim of the present study was to evaluate whether brain mitochondria from old rats (24 months old) would be more susceptible to rotenone-induced inhibition of oxygen consumption and increased generation of H2O2 than mitochondria from young-adult rats (3-4 months old). Isolated brain mitochondria were incubated in the presence of different rotenone concentrations (5, 10, and 100nM), and oxygen consumption and H2O2 production were measured during respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration). Respiratory state 3 and citrate synthase activity were significantly lower in mitochondria from old rats. Mitochondria from young-adult and old rats showed similar sensitivity to rotenone-induced inhibition of oxygen consumption. Similarly, H2O2 production rates by both types of mitochondria were dose-dependently stimulated to the same extent by increasing concentrations of rotenone. We conclude that rotenone exerts similar effects on oxygen consumption and H2O2 production by isolated brain mitochondria from young-adult and old rats. Therefore, aging does not increase the mitochondrial H2O2 generation in response to complex I inhibition.
Resumo:
In this study, we hypothesized that blunting of the natriuresis response to intracerebroventricularly (i.c.v.) microinjected cholinergic and adrenergic agonists is involved in the development of hypertension in spontaneously hypertensive rats (SHR). We evaluated the effect of i.c.v. injection of cholinergic and noradrenergic agonists, at increasing concentrations, and of muscarinic cholinergic and α1 and α2-adrenoceptor antagonists on blood pressure and urinary sodium handling in SHR, compared with age-matched Wistar Kyoto rats (WR). We confirmed that CCh and NE microinjected into the lateral ventricle (LV) of conscious rats leads to enhanced natriuresis. This response was associated with increased proximal and post-proximal sodium excretion accompanied by an unchanged rate of glomerular filtration. We showed that cholinergic-induced natriuresis in WR and SHR was attenuated by previous i.c.v. administration of atropine and was significantly lower in the hypertensive strain than in WR. In both groups the natriuretic effect of injection of noradrenaline into the LV was abolished by previous local injection of an α1-adrenoceptor antagonist (prazosin). Conversely, LV α2-adrenoceptor antagonist (yohimbine) administration potentiated the action of noradrenaline. The LV yohimbine pretreatment normalized urinary sodium excretion in SHR compared with age-matched WR. In conclusion, these are, as far as we are aware, the first results showing the importance of interaction of central cholinergic and/or noradrenergic receptors in the pathogenesis of spontaneous hypertension. These experiments also provide good evidence of the existence of a central adrenergic mechanism consisting of α1 and α2-adrenoceptors which works antagonistically on regulation of renal sodium excretion.
Resumo:
The present study aimed to investigate the effects of the interaction between the abusive use of nandrolone decanoate (ND) and physical activity on the prostate structure of adult and older rats. We evaluated whether the use of ND, associated or not with physical exercise during the post-pubertal stage, interferes with the morphophysiology of the prostate. Fifty-six male Sprague-Dawley rats were divided into eight groups. The animals were treated for eight weeks and divided into sedentary and trained groups, with or without ND use. Four groups were sacrificed 48 h after the end of the eight week experiment (adult groups), and four other groups were sacrificed at 300 days of age (older groups). The prostate was collected and processed for stereological and histopathological analysis and for the expression of AQP1 and VEGF by the Western blotting technique. Both ND and physical activity altered the ventral prostate structure of the rats; the AQP1 and VEGF expression increased in young animals subjected to physical exercise. Thus, it was concluded that the use of ND, associated or not with exercise during the post-pubertal stage, interferes with the morphophysiology of the prostate.
Resumo:
The aim of this work was to determine PAs levels in pith tissues and callus cultures from haploid and diploid tobacco plants, explanted from the apical and basal regions of the stem. These explants were cultured in an RM-64 medium supplied with IAA and kinetin, under light or in the dark, during successive subcultures. PAs levels followed a basipetal decrease in diploid and an increase in haploid, pith tissues. A similar pattern of total PAs (free + conjugated) was observed for the callus of diploid and haploid plants maintained in the light, and for the haploid callus in the dark, whereas the diploid callus in the dark showed a constant increase in total PAs levels until the end of culture. The PA increase in the diploid callus in the dark was related to free Put levels increase. The ploidy status of the plants could express different PA gradients together with the plant pith and in vitro callus cultures.
Resumo:
A modified version of the intruder-resident paradigm was used to investigate if social recognition memory lasts at least 24 h. One hundred and forty-six adult male Wistar rats were used. Independent groups of rats were exposed to an intruder for 0.083, 0.5, 2, 24, or 168 h and tested 24 h after the first encounter with the familiar or a different conspecific. Factor analysis was employed to identify associations between behaviors and treatments. Resident rats exhibited a 24-h social recognition memory, as indicated by a 3- to 5-fold decrease in social behaviors in the second encounter with the same conspecific compared to those observed for a different conspecific, when the duration of the first encounter was 2 h or longer. It was possible to distinguish between two different categories of social behaviors and their expression depended on the duration of the first encounter. Sniffing the anogenital area (49.9% of the social behaviors), sniffing the body (17.9%), sniffing the head (3%), and following the conspecific (3.1%), exhibited mostly by resident rats, characterized social investigation and revealed long-term social recognition memory. However, dominance (23.8%) and mild aggression (2.3%), exhibited by both resident and intruders, characterized social agonistic behaviors and were not affected by memory. Differently, sniffing the environment (76.8% of the non-social behaviors) and rearing (14.3%), both exhibited mostly by adult intruder rats, characterized non-social behaviors. Together, these results show that social recognition memory in rats may last at least 24 h after a 2-h or longer exposure to the conspecific.
Resumo:
O desenvolvimento do sistema nervoso é bastante complexo, existindo poucos estudos sobre a organização dos envoltórios cerebrais relacionados ao crescimento encefálico. Utilizando como modelo experimental o rato, analisaram-se os diferentes aspectos estruturais e morfométricos da paquimeninge e leptomeninge durante o processo de envelhecimento. Foram utilizados quatro grupos de ratos em diferentes faixas etárias e analisadas as meninges em microscopias de luz e eletrônica. Verificamos que o grupo de ratos adultos apresentou uma maior área de fibras colágenas tanto do tipo I e quanto do tipo III, em relação aos outros grupos. Encontramos também que as fibras colágenas do tipo III em todos os grupos analisados ocupam uma maior área quando comparados com as fibras do tipo I. Os resultados revelam que a coloração de Weigert Oxona, que mostra fibras elásticas, elaunínicas e oxitalânicas, apresentou uma diferença estatisticamente maior de fibras quando comparados com as colorações de Weigert e Verhoeff, que mostra fíbras elaunínicas e elásticas, respectivamente. Os resultados ultra-estruturais demonstraram a presença de muitos fibroblastos e mitocôndrias tanto na paquimeninge como nas leptomeninges dos grupos de ratos neonatos e adultos, indicativo de alta atividade celular e conseqüentemente, intensa formação de tecido conjuntivo. Como as fibras colágenas do tipo III atuam na manutenção da estrutura de tecidos delicados e expansíveis, o estudo mostra que as funções das meninges encefálicas não estão relacionadas apenas com a resistência a trações e tensões a que estão sujeitas o encéfalo. Mas também a função relacionada com a distensibilidade dos vasos meníngeos e cerebrais de acordo com a necessidade do aporte sanguíneo em diversas funções específicas regionais do tecido nervoso.
Resumo:
OBJECTIVE: To investigate the expression of SMAD proteins in human thyroid tissues since the inactivation of TGF-β/activin signaling components is reported in several types of cancer. Phosphorylated SMAD 2 and SMAD3 (pSMAD2/3) associated with the SMAD4 induce the signal transduction generated by TGF-β and activin, while SMAD7 inhibits this intracellular signaling. Although TGF-β and activin exert antiproliferative roles in thyroid follicular cells, thyroid tumors express high levels of these proteins. MATERIALS AND METHODS: The protein expression of SMADs was evaluated in multinodular goiter, follicular adenoma, papillary and follicular carcinomas by immunohistochemistry. RESULTS: The expression of pSMAD2/3, SMAD4 and SMAD7 was observed in both benign and malignant thyroid tumors. Although pSMAD2/3, SMAD4 and SMAD7 exhibited high cytoplasmic staining in carcinomas, the nuclear staining of pSMAD2/3 was not different between benign and malignant lesions. CONCLUSIONS: The finding of SMADs expression in thyroid cells and the presence of pSMAD2/3 and SMAD4 proteins in the nucleus of tumor cells indicates propagation of TGF-β/activin signaling. However, the high expression of the inhibitory SMAD7, mostly in malignant tumors, could contribute to the attenuation of the SMADs antiproliferative signaling in thyroid carcinomas.
Resumo:
This study aims to estimate an adult-equivalent scale for calorie requirements and to determine the differences between adult-equivalent and per capita measurements of calorie availability in the Brazilian population. The study used data from the 2002-2003 Brazilian Household Budget Survey. The calorie requirement for a reference adult individual was based on the mean requirements for adult males and females (2,550kcal/day). The conversion factors were defined as the ratios between the calorie requirements for each age group and gender and that of the reference adult. The adult-equivalent calorie availability levels were higher than the per capita levels, with the largest differences in rural and low-income households. Differences in household calorie availability varied from 22kcal/day (households with adults and an adolescent) to 428kcal/day (households with elderly individuals), thus showing that per capital measurements can underestimate the real calorie availability, since they overlook differences in household composition.