936 resultados para adaptive resonance theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of machine foundations are done on the basis of two principal criteria viz., vibration amplitude should be within the permissible limits and natural frequency of machine-foundation-soil system should be away from the operating frequency (i.e. avoidance of resonance condition). In this paper the nondimensional amplitude factor M-m or M-r m and the nondimensional frequency factor a(o m) at resonance are related using elastic half space theory and is used as a new approach for a simplified design procedure for the design of machine foundations for all the modes of vibration fiz. vertical, horizontal, rocking and torsional for rigid base pressure distribution and weighted average displacement condition. The analysis show that one need not know the value of Poisson's ratio for rotating mass system for all the modes of vibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solvents are known to affect the triplet state structure and reactivity. In this paper, we have employed time-resolved resonance Raman (TR3) spectroscopy to understand solvent-induced subtle structural changes in the lowest excited triplet state of thioxanthone. Density functional theory (DFT) combined with the self-consistent reaction field (SCRF) implicit solvation model has been used to calculate the vibrational frequencies in the solvents. Here, we report a unique observation of the coexistence of two triplets, which has been substantiated by the probe wavelength-dependent Raman experiments. The coexistence of two triplets has been further supported by photoreduction experiments carried out at various temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substitution plays an important role in determining the triplet state reactivity. In this paper, we have studied the effect of chlorine substitution on the triplet state structure and the reactivity of thioxanthone (TX). We have employed time-resolved resonance Raman technique to understand the structure of the lowest triplet excited state of 2-chlorothioxanthone (CTX). The experimental findings have been corroborated with the computational results using density functional theory. Akin to the parent compound (TX), coexistence of two lowest triplet states has been observed in case of CTX, which has been substantiated using resonant probe wavelength dependence study. The relative contribution of 3n-pi* to 3 pi-pi* to the equilibrated triplet state has been found to be more for CTX compared to TX suggesting increase in the triplet state reactivity after the substitution. The above observation has been further supported by the flash photolysis experiments. Copyright (C) 2013 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an ``adaptive threshold,'' i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compressive Sensing theory combines the signal sampling and compression for sparse signals resulting in reduction in sampling rate and computational complexity of the measurement system. In recent years, many recovery algorithms were proposed to reconstruct the signal efficiently. Look Ahead OMP (LAOMP) is a recently proposed method which uses a look ahead strategy and performs significantly better than other greedy methods. In this paper, we propose a modification to the LAOMP algorithm to choose the look ahead parameter L adaptively, thus reducing the complexity of the algorithm, without compromising on the performance. The performance of the algorithm is evaluated through Monte Carlo simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the Feshbach resonance of spin-1/2 particles in a uniform synthetic non-Abelian gauge field that produces spin-orbit coupling and constant spin potentials. We develop a renormalizable quantum field theory including the closed-channel boson which engenders the resonance. We show that the gauge field shifts the Feshbach field where the low-energy scattering length diverges. In addition the Feshbach field is shown to depend on the center-of-mass momentum of the particles. For high-symmetry gauge fields which produce a Rashba spin coupling, we show that the system supports two bound states over a regime of magnetic fields when the background scattering length is negative and the resonance width is comparable to the energy scale of the spin-orbit coupling. We discuss interesting consequences useful for future theoretical and experimental studies, even while our predictions are in agreement with recent experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To combine the advantages of both stability and optimality-based designs, a single network adaptive critic (SNAC) aided nonlinear dynamic inversion approach is presented in this paper. Here, the gains of a dynamic inversion controller are selected in such a way that the resulting controller behaves very close to a pre-synthesized SNAC controller in the output regulation sense. Because SNAC is based on optimal control theory, it makes the dynamic inversion controller operate nearly optimal. More important, it retains the two major benefits of dynamic inversion, namely (i) a closed-form expression of the controller and (ii) easy scalability to command tracking applications without knowing the reference commands a priori. An extended architecture is also presented in this paper that adapts online to system modeling and inversion errors, as well as reduced control effectiveness, thereby leading to enhanced robustness. The strengths of this hybrid method of applying SNAC to optimize an nonlinear dynamic inversion controller is demonstrated by considering a benchmark problem in robotics, that is, a two-link robotic manipulator system. Copyright (C) 2013 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-pi(1)*; S-1 state) and the shorter (1 pi-pi(1)*; S-2 state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S-2 state relative to the ground state. Raman excitation profiles of PQ (400-1800 cm(-1)) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C-2 nu symmetry constraint on the S-2 state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photochemistry of aromatic ketones plays a key role in various physicochemical and biological processes, and solvent polarity can be used to tune their triplet state properties. Therefore, a comprehensive analysis of the conformational structure and the solvent polarity induced energy level reordering of the two lowest triplet states of 9,10-phenanthrenequinone (PQ) was carried out using nanosecond-time-resolved absorption (ns-TRA), time-resolved resonance Raman (TR3) spectroscopy, and time dependent-density functional theory (TD-DFT) studies. The ns-TRA of PQ in acetonitrile displays two bands in the visible range, and these two bands decay with similar lifetime at least at longer time scales (mu s). Interestingly, TR3 spectra of these two bands indicate that the kinetics are different at shorter time scales (ns), while at longer time scales they followed the kinetics of ns-TRA spectra. Therefore, we report a real-time observation of the thermal equilibrium between the two lowest triplet excited states of PQ assigned to n pi* and pi pi* of which the pi pi* triplet state is formed first through intersystem crossing. Despite the fact that these two states are energetically close and have a similar conformational structure supported by TD-DFT studies, the slow internal conversion (similar to 2 ns) between the T-2(1(3)n pi*) and T-1(1(3)pi pi*) triplet states indicates a barrier. Insights from the singlet excited states of PQ in protic solvents J. Chem. Phys. 2015, 142, 24305] suggest that the lowest n pi* and pi pi* triplet states should undergo hydrogen bond weakening and strengthening, respectively, relative to the ground state, and these mechanisms are substantiated by TD-DFT calculations. We also hypothesize that the different hydrogen bonding mechanisms exhibited by the two lowest singlet and triplet excited states of PQ could influence its ISC mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layered steam injection, widely used in Liaohe Oilfield at Present, is an effective recovery technique to heavy oil reserves. Which makes the steam front-peak push forward uniformly, the amount of steam injection be assigned rationally, and the effect of injection steam be obtained as expected. To maintain a fixed ratio of layered steam injection and solve the problem of nonadjustable hole diameter with the change of layer pressure in the existing injectors, a new method is proposed in this paper to design layered steam injectors based on the dynamic balance theory. According to gas-liquid two-phase flow theory and beat transfer theory, the energy equation and the heat conduction equation in boreholes are developed. By analyzing the energy equilibrium of water-steam passing through the injector hole, we find an expression to describe the relation between the cross-sectional area of injector hole and the layer pressure. With this expression, we provide a new set of calculation methods and write the corresponding computer program to design and calculate the main parameters of a steam injector. The actual measurement data show that the theoretically calculated results are accurate, the software runs reliably, and they provide the design of self-adjustable layered steam injectors with the theoretical foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layered steam injection, widely used in Liaohe Oilfield at present, is an effective recovery technique to heavy oil reserves. Which makes the steam front-peak push forward uniformly, the amount of steam injection be assigned rationally, and the effect of injection steam be obtained as expected. To maintain a fixed ratio of layered steam injection and solve the problem of nonadjustable hole diameter with the change of layer pressure in the existing injectors, a new method is proposed in this paper to design layered steam injectors based on the dynamic balance theory According to gas-liquid two-phase flow theory and heat transfer theory, the energy equation and the heat conduction equation in boreholes are developed. By analyzing the energy equilibrium of water-steam passing through the injector hole, we find an expression to describe the relation between the cross-sectional area of injector hole and the layer pressure. With this expression, we provide a new set of calculation methods and write the corresponding computer program to design and calculate the main parameters of a steam injector. The actual measurement data show that the theoretically calculated results are accurate, the software runs reliably, and they provide the design of self-adjustable layered steam injectors with the theoretical foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presentado en el 13th WSEAS International Conference on Automatic Control, Modelling and Simulation, ACMOS'11

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first part of this thesis, experiments utilizing an NMR phase interferometric concept are presented. The spinor character of two-level systems is explicitly demonstrated by using this concept. Following this is the presentation of an experiment which uses this same idea to measure relaxation times of off-diagonal density matrix elements corresponding to magnetic-dipole-forbidden transitions in a ^(13)C-^1H, AX spin system. The theoretical background for these experiments and the spin dynamics of the interferometry are discussed also.

The second part of this thesis deals with NMR dipolar modulated chemical shift spectroscopy, with which internuclear bond lengths and bond angles with respect to the chemical shift principal axis frame are determined from polycrystalline samples. Experiments using benzene and calcium formate verify the validity of the technique in heteronuclear (^(13)C-^1H) systems. Similar experiments on powdered trichloroacetic acid confirm the validity in homonuclear (^1H- ^1H) systems. The theory and spin dynamics are explored in detail, and the effects of a number of multiple pulse sequences are discussed.

The last part deals with an experiment measuring the ^(13)C chemical shift tensor in K_2Pt(CN)_4Br_(0.3) • 3H_2O, a one-dimensional conductor. The ^(13)C spectra are strongly affected by ^(14)N quadrupolar interactions via the ^(13)C - ^(14)N dipolar interaction. Single crystal rotation spectra are shown.

An appendix discussing the design, construction, and performance of a single-coil double resonance NMR sample probe is included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I. Proton Magnetic Resonance of Polynucleotides and Transfer RNA.

Proton magnetic resonance was used to follow the temperature dependent intramolecular stacking of the bases in the polynucleotides of adenine and cytosine. Analysis of the results on the basis of a two state stacked-unstacked model yielded values of -4.5 kcal/mole and -9.5 kcal/mole for the enthalpies of stacking in polyadenylic and polycytidylic acid, respectively.

The interaction of purine with these molecules was also studied by pmr. Analysis of these results and the comparison of the thermal unstacking of polynucleotides and short chain nucleotides indicates that the bases contained in stacks within the long chain poly nucleotides are, on the average, closer together than the bases contained in stacks in the short chain nucleotides.

Temperature and purine studies were also carried out with an aqueous solution of formylmethionine transfer ribonucleic acid. Comparison of these results with the results of similar experiments with the homopolynucleotides of adenine, cytosine and uracil indicate that the purine is probably intercalating into loop regions of the molecule.

The solvent denaturation of phenylalanine transfer ribonucleic acid was followed by pmr. In a solvent mixture containing 83 volume per cent dimethylsulf oxide and 17 per cent deuterium oxide, the tRNA molecule is rendered quite flexible. It is possible to resolve resonances of protons on the common bases and on certain modified bases.

Part II. Electron Spin Relaxation Studies of Manganese (II) Complexes in Acetonitrile.

The electron paramagnetic resonance spectra of three Mn+2 complexes, [Mn(CH3CN)6]+2, [MnCl4]-2, and [MnBr4]-2, in acetonitrile were studied in detail. The objective of this study was to relate changes in the effective spin Hamiltonian parameters and the resonance line widths to the structure of these molecular complexes as well as to dynamical processes in solution.

Of the three systems studied, the results obtained from the [Mn(CH3CN)6]+2 system were the most straight-forward to interpret. Resonance broadening attributable to manganese spin-spin dipolar interactions was observed as the manganese concentration was increased.

In the [MnCl4]-2 system, solvent fluctuations and dynamical ion-pairing appear to be significant in determining electron spin relaxation.

In the [MnBr4]-2 system, solvent fluctuations, ion-pairing, and Br- ligand exchange provide the principal means of electron spin relaxation. It was also found that the spin relaxation in this system is dependent upon the field strength and is directly related to the manganese concentration. A relaxation theory based on a two state collisional model was developed to account for the observed behavior.