910 resultados para active and exo-site binding
Resumo:
This paper forms part of Lukasz Mikolajczyk's PhD dissertation, which is supervised by Karen Milek
Resumo:
Heterotrimeric G proteins (peripheral proteins) conduct signals from membrane receptors (integral proteins) to regulatory proteins localized to various cellular compartments. They are in excess over any G protein-coupled receptor type on the cell membrane, which is necessary for signal amplification. These facts account for the large number of G protein molecules bound to membrane lipids. Thus, the protein-lipid interactions are crucial for their cellular localization, and consequently for signal transduction. In this work, the binding of G protein subunits to model membranes (liposomes), formed with defined membrane lipids, has been studied. It is shown that although G protein α-subunits were able to bind to lipid bilayers, the presence of nonlamellar-prone phospholipids (phosphatidylethanolamines) enhanced their binding to model membranes. This mechanism also appears to be used by other (structurally and functionally unrelated) peripheral proteins, such as protein kinase C and the insect protein apolipophorin III, indicating that it could constitute a general mode of protein-lipid interactions, relevant in the activity and translocation of some peripheral (amphitropic) proteins from soluble to particulate compartments. Other factors, such as the presence of cholesterol or the vesicle surface charge, also modulated the binding of the G protein subunits to lipid bilayers. Conversely, the binding of G protein-coupled receptor kinase 2 and the G protein β-subunit to liposomes was not increased by hexagonally prone lipids. Their distinct interactions with membrane lipids may, in part, explain the different cellular localizations of all of these proteins during the signaling process.
Resumo:
Peptide growth factors were isolated from conditioned medium derived from rice (Oryza sativa L.) suspension cultures and identified to be a sulfated pentapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH] and its C-terminal-truncated tetrapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-OH]. These structures were identical to the phytosulfokines originally found in asparagus (Asparagus officinalis L.) mesophyll cultures. The pentapeptide [phytosulfokine-α (PSK-α)] very strongly stimulated colony formation of rice protoplasts at concentrations above 10−8 M, indicating a similar mode of action in rice of phytosulfokines. Binding assays using 35S-labeled PSK-α demonstrated the existence of both high- and low-affinity specific saturable binding sites on the surface of rice cells in suspension. Analysis of [35S]PSK-α binding in differential centrifugation fractions suggested association of the binding with a plasma membrane-enriched fraction. The apparent Kd values for [35S]PSK-α binding were found to be 1 × 10−9 M for the high-affinity type and 1 × 10−7 M for the low-affinity type, with maximal numbers of binding sites of 1 × 104 sites per cell and 1 × 105 sites per cell, respectively. Competition studies with [35S]PSK-α and several synthetic PSK-α analogs demonstrated that only peptides that possesses mitogenic activity can effectively displace the radioligand. These results suggest that a signal transduction pathway mediated by peptide factors is involved in plant cell proliferation.
Resumo:
Cluster of differentiation antigen 4 (CD4), the T lymphocyte antigen receptor component and human immunodeficiency virus coreceptor, is down-modulated when cells are activated by antigen or phorbol esters. During down-modulation CD4 dissociates from p56lck, undergoes endocytosis through clathrin-coated pits, and is then sorted in early endosomes to late endocytic organelles where it is degraded. Previous studies have suggested that phosphorylation and a dileucine sequence are required for down-modulation. Using transfected HeLa cells, in which CD4 endocytosis can be studied in the absence of p56lck, we show that the dileucine sequence in the cytoplasmic domain is essential for clathrin-mediated CD4 endocytosis. However, this sequence is only functional as an endocytosis signal when neighboring serine residues are phosphorylated. Phosphoserine is required for rapid endocytosis because CD4 molecules in which the cytoplasmic domain serine residues are substituted with glutamic acid residues are not internalized efficiently. Using surface plasmon resonance, we show that CD4 peptides containing the dileucine sequence bind weakly to clathrin adaptor protein complexes 2 and 1. The affinity of this interaction is increased 350- to 700-fold when the peptides also contain phosphoserine residues.
Resumo:
The CCAAT/enhancer binding protein α (C/EBPα) and CCAAT/enhancer binding protein β (C/EBPβ) mRNAs are templates for the differential translation of several isoforms. Immunoblotting detects C/EBPαs with molecular masses of 42, 38, 30, and 20 kDa and C/EBPβs of 35, 20, and ∼8.5 kDa. The DNA-binding activities and pool levels of p42C/EBPα and p30C/EBPα in control nuclear extracts decrease significantly whereas the binding activity and protein levels of the 20-kDa isoforms increase dramatically with LPS treatment. Our studies suggest that the LPS response involves alternative translational initiation at specific in-frame AUGs, producing specific C/EBPα and C/EBPβ isoform patterns. We propose that alternative translational initiation occurs by a leaky ribosomal scanning mechanism. We find that nuclear extracts from normal aged mouse livers have decreased p42C/EBPα levels and binding activity, whereas those of p20C/EBPα and p20C/EBPβ are increased. However, translation of 42-kDa C/EBPα is not down-regulated on polysomes, suggesting that aging may affect its nuclear translocation. Furthermore, recovery of the C/EBPα- and C/EBPβ-binding activities and pool levels from an LPS challenge is delayed significantly in aged mouse livers. Thus, aged livers have altered steady-state levels of C/EBPα and C/EBPβ isoforms. This result suggests that normal aging liver exhibits characteristics of chronic stress and a severe inability to recover from an inflammatory challenge.
Resumo:
Nonribosomal nucleolar protein gar2 is required for 18S rRNA and 40S ribosomal subunit production in Schizosaccharomyces pombe. We have investigated the consequences of the absence of each structural domain of gar2 on cell growth, 18S rRNA production, and nucleolar structure. Deletion of gar2 RNA-binding domains (RBDs) causes stronger inhibition of growth and 18S rRNA accumulation than the absence of the whole protein, suggesting that other factors may be titrated by its remaining N-terminal basic/acidic serine-rich domain. These drastic functional defects correlate with striking nucleolar hypertrophy. Point mutations in the conserved RNP1 motifs of gar2 RBDs supposed to inhibit RNA–protein interactions are sufficient to induce severe nucleolar modifications but only in the presence of the N-terminal domain of the protein. Gar2 and its mutants also distribute differently in glycerol gradients: gar2 lacking its RBDs is found either free or assembled into significantly larger complexes than the wild-type protein. We propose that gar2 helps the assembly on rRNA of factors necessary for 40S subunit synthesis by providing a physical link between them. These factors may be recruited by the N-terminal domain of gar2 and may not be released if interaction of gar2 with rRNA is impaired.
Resumo:
In the last decade, two tools, one drawn from information theory and the other from artificial neural networks, have proven particularly useful in many different areas of sequence analysis. The work presented herein indicates that these two approaches can be joined in a general fashion to produce a very powerful search engine that is capable of locating members of a given nucleic acid sequence family in either local or global sequence searches. This program can, in turn, be queried for its definition of the motif under investigation, ranking each base in context for its contribution to membership in the motif family. In principle, the method used can be applied to any binding motif, including both DNA and RNA sequence families, given sufficient family size.
Resumo:
Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.
Resumo:
We propose a general mean field model of ligand-protein interactions to determine the thermodynamic equilibrium of a system at finite temperature. The method is employed in structural assessments of two human immuno-deficiency virus type 1 protease complexes where the gross effects of protein flexibility are incorporated by utilizing a data base of crystal structures. Analysis of the energy spectra for these complexes has revealed that structural and thermo-dynamic aspects of molecular recognition can be rationalized on the basis of the extent of frustration in the binding energy landscape. In particular, the relationship between receptor-specific binding of these ligands to human immunodeficiency virus type 1 protease and a minimal frustration principle is analyzed.
Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain.
Resumo:
Pleckstrin homology (PH) domains are found in many signaling molecules and are thought to be involved in specific intermolecular interactions. Their binding to several proteins and to membranes containing 1-alpha-phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has been reported. A region that includes the PH domain has also been implicated in binding of phospholipase C-delta 1 (PLC-delta 1) to both PtdIns(4,5)P2 and D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] [Cifuentes, M. E., Delaney, T. & Rebecchi, M. J. (1994) J. Biol. Chem. 269, 1945-1948]. We report herein that the isolated PH domain from PLC-delta 1 binds to both PtdIns(4,5)P2 and Ins(1,4,5)P3 with high affinity and shows the same binding specificity seen by others with whole PLC-delta 1. Thus the PH domain is functionally and structurally modular. These results demonstrate stereo-specific high-affinity binding by an isolated PH domain and further support a functional role for PH domains in the regulation of PLC isoforms. Other PH domains did not bind strongly to the compounds tested, suggesting that inositol phosphates and phospholipids are not likely physiological ligands for all PH domains. Nonetheless, since all PH-domain-containing proteins are associated with membrane surfaces, several PH domains bind to specific sites on membranes, and PH domains appear to be electrostatically polarized, a possible general role for PH domains in membrane association is suggested.
Resumo:
The yeast two-hybrid system and far-Western protein blot analysis were used to demonstrate dimerization of human double-stranded RNA (dsRNA)-dependent protein kinase (PKR) in vivo and in vitro. A catalytically inactive mutant of PKR with a single amino acid substitution (K296R) was found to dimerize in vivo, and a mutant with a deletion of the catalytic domain of PKR retained the ability to dimerize. In contrast, deletion of the two dsRNA-binding motifs in the N-terminal regulatory domain of PKR abolished dimerization. In vitro dimerization of the dsRNA-binding domain required the presence of dsRNA. These results suggest that the binding of dsRNA by PKR is necessary for dimerization. The mammalian dsRNA-binding protein TRBP, originally identified on the basis of its ability to bind the transactivation region (TAR) of human immunodeficiency virus RNA, also dimerized with itself and with PKR in the yeast assay. Taken together, these results suggest that complexes consisting of different combinations of dsRNA-binding proteins may exist in vivo. Such complexes could mediate differential effects on gene expression and control of cell growth.
Resumo:
Colloidal gold nanoparticles were synthesized by different procedures affording suspensions with two different mean sizes (2 and 5 nm). Au catalysts were prepared by sol immobilization onto several silica frameworks with different 2D and 3D mesoporosities. The catalysts were tested in styrene oxidation reactions showing excellent efficiency and selectivity. The effect of nanoparticle size and mesoporous framework on the physical and catalytic properties of the final materials was studied. The most selective catalyst was prepared from the 5 nm Au nanoparticles and the more interconnected silica framework (3D mesoporosity).
Resumo:
Current trends show progressive declines in levels of physical activity from childhood through adolescence and adulthood, most notably for females. The current study examined organized activity involvement in active and inactive females (age 18) using retrospective data. Results indicated that active females participated in significantly more physical activities than inactive females from age 6 to age 18. No significant differences were found between groups for non-physical activities. In addition, parents of active and inactive females were the most influential factor in initiating physical activity. However, parents of active females initiated more physical activity involvement than did parents of inactive females. Results also indicate that certain periods in childhood and adolescence appear to be critical for developing long-term physical activity habits.