837 resultados para acid and Base Treatment
Resumo:
Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an efficient technique is presented for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used for the control (medication) synthesis. First, taking a set of nominal parameters, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat nominal patients (patients having same nominal parameters as used for the control design) effectively. However, since the parameters of an actual patient can be different from that of the ideal patient, to make the treatment strategy more effective and efficient, a model-following neuro-adaptive controller is augmented to the nominal controller. In this approach, a neural network trained online (based on Lyapunov stability theory) facilitates a new adaptive controller, computed online. From the simulation studies, this adaptive control design approach (treatment strategy) is found to be very effective to treat the CML disease for actual patients. Sufficient generality is retained in the theoretical developments in this paper, so that the techniques presented can be applied to other similar problem as well. Note that the technique presented is computationally non-intensive and all computations can be carried out online.
Resumo:
Single crystals of a symmetrically substituted molecule, 1,3,5-triazine-2,4,6-triaminehexaacetic acid, (TTHA) and its Ca2+ salt have been synthesized, the analysis of which reveals the existence of novel channel type cavities and helical packing organizations in the crystals.
Resumo:
Charge density analysis from both experimental and theoretical points of view on two molecular complexes: one is formed between nicotinamide and salicylic acid, and the other formed between nicotinamide and oxalic acid brings out the quantitative topological features to distinguish a cocrystal from a salt.
Resumo:
The effect of magnesium addition and subsequent heat treatment on mild wear of a cast hypoeutectic aluminium-silicon alloy when slid against EN 24 steel is studied. Morphology and chemistry of worn surface and subsurface are studied with a view to identify wear mechanism. Stability of an iron-aluminium mixed surface layer was found to be the key factor controlling wear resistance.
Resumo:
DL-Proline hemisuccinic acid, C5H9NO2.1/2C4H6O4, M(r) = 174.2, P2(1/c) a = 5.254 (1), b = 17.480 (1), c = 10.230 (i) angstrom, beta = 119.60 (6)-degrees Z = 4, D(m) = 1.41 (4), D(x) = 1.42 g cm-3, R = 0.045 for 973 observed reflections. Glycyl-L-histidinium semisuccinate monohydrate, C8H13N4O3+.C4H5O4-.H2O, M(r) = 348.4, P2(1), a = 4.864 (1), b = 17.071 (2), c = 9.397 (1) angstrom, beta = 90.58-degrees, Z = 2, D(m) = 1.45 (1), D(x) = 1.48 g cm-3, R = 0.027 for 1610 observed reflections. Normal amino-acid and dipeptide aggregation patterns are preserved in the structures in spite of the presence of succinic acid/semisuccinate ions. In both the structures, the amino-acid/dipeptide layers stack in such a way that the succinic acid molecules/semisuccinate ions are enclosed in voids created during stacking. Substantial variability in the ionization state and the stoichiometry is observed in amino-acid and peptide complexes of succinic acid. Succinic acid molecules and succinate ions appear to prefer a planar centro-symmetric conformation with the two carboxyl (carboxylate) groups trans with respect to the central C=C bond. Considerable variation is seen in the departure from and modification of normal amino-acid aggregation patterns produced by the presence of succinic acid. Some of the complexes can be described as inclusion compounds with the amino acid/dipeptide as the 'host' and succinic acid/semisuccinate/succinate as the 'guest'. The effects of change in chirality, though very substantial, are not the same in different pairs of complexes involving DL and L isomers of the same amino acid.
Resumo:
The importance and usefulness of local doublet parameters in understanding sequence dependent effects has been described for A- and B-DNA oligonucleotide crystal structures. Each of the two sets of local parameters described by us in the NUPARM algorithm, namely the local doublet parameters, calculated with reference to the mean z-axis, and the local helical parameters, calculated with reference to the local helix axis, is sufficient to describe the oligonucleotide structures, with the local helical parameters giving a slightly magnified picture of the variations in the structures. The values of local doublet parameters calculated by NUPARM algorithm are similar to those calculated by NEWHELIX90 program, only if the oligonucleotide fragment is not too distorted. The mean values obtained using all the available data for B-DNA crystals are not significantly different from those obtained when a limited data set is used, consisting only of structures with a data resolution of better than 2.4 A and without any bound drug molecule. Thus the variation observed in the oligonucleotide crystals appears to be independent of the quality of their crystallinity. No strong correlation is seen between any pair of local doublet parameters but the local helical parameters are interrelated by geometric relationships. An interesting feature that emerges from this analysis is that the local rise along the z-axis is highly correlated with the difference in the buckle values of the two basepairs in the doublet, as suggested earlier for the dodecamer structures (Bansal and Bhattacharyya, in Structure & Methods: DNA & RNA, Vol. 3 (Eds., R.H. Sarma and M.H. Sarma), pp. 139-153 (1990)). In fact the local rise values become almost constant for both A- and B-forms, if a correction is applied for the buckling of the basepairs. In B-DNA the AA, AT, TA and GA basepair sequences generally have a smaller local rise (3.25 A) compared to the other sequences (3.4 A) and this seems to be an intrinsic feature of basepair stacking interaction and not related to any other local doublet parameter. The roll angles in B-DNA oligonucleotides have small values (less than +/- 8 degrees), while mean local twist varies from 24 degrees to 45 degrees. The CA/TG doublet sequences show two types of preferred geometries, one with positive roll, small positive slide and reduced twist and another with negative roll, large positive slide and increased twist.(ABSTRACT TRUNCATED AT 400 WORDS)
Resumo:
A review of the research work that has been carried out thus far relating the casting and heat treatment variables to the structure and mechanical properties of Al–7Si–Mg (wt-%) is presented here. Although specifications recommend a wide range of magnesium contents and a fairly high content of iron, a narrow range of magnesium contents, closer to either the upper or lower specified limits depending on the properties desired, and a low iron content will have to be maintained to obtain optimum and consistent mechanical properties. A few studies have revealed that the modification of eutectic silicon slightly increases ductility and fracture toughness and also that the effect of modification is predominant at low iron content. Generally, higher solidification rates give superior mechanical properties. Delayed aging (the time elapsed between quenching and artificial aging during precipitation hardening) severely affects the strength of the alloy. The mechanism of delayed aging can be explained on the basis of Pashley's kinetic model. It has been reported that certain trace additions (cadmium, indium, tin, etc.) neutralise the detrimental effect of delayed aging. In particular, it should be noted that delayed aging is not mentioned in any of the specifications. With reference to the mechanism by which trace additions neutralise the detrimental effect of delayed aging, various hypotheses have been postulated, of which impurity–vacancy interaction appears to be the most widely accepted.
Resumo:
The adsorption of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) onto alumina has been studied as a function of pH, both individually and in the presence of each other. The adsorption density of PAA is found to decrease with an increase of pH while that of PVA shows the opposite trend. In a binary system containing PAA and PVA, the presence of PVA does not affect the adsorption of PAA onto alumina, but the addition of PAA diminishes the adsorption of PVA in the pH range investigated. The adsorption isotherm of PAA at acidic pH exhibits high-affinity Langmuirian behavior. The isotherms for PVA appear rounded and are of the low-affinity type, Once again the adsorption isotherms of PAA remain unaltered in the presence of PVA whereas those of PVA are significantly affected resulting in a lowering of the adsorption density consequent to PAA addition. A variation in the sequence of addition of PAA and PVA does not affect the adsorption behavior of either of the polymers, The electrokinetic behavior of alumina with PAA is hardly influenced by the addition of PVA, On the other hand, the electrophoretic mobility of alumina in the presence of PVA is significantly altered in the presence of PAA and closely resembles the trend observed with PAA alone. Desorption studies reveal that over 80% of PVA could be desorbed in the pH range 3-9 whereas in the case of PAA, the percent desorption increases from 20 to about 70% as the pH is increased from about 3 to 8. Solution conductivity tests confirm interaction of aluminum species and PAA in the bulk solution. FTIR spectroscopic data provide evidence in support of hydrogen bonding and chemical interaction in the case of the PAA-alumina system and hydrogen bonding with respect to the PVA-alumina interaction. (C) 1999 Academic Press.