965 resultados para Zr(SO_4)_2
Resumo:
Mg-5Y-3Nd-0.6Zr-xGd (x = 0, 2 and 4 wt.%) alloys were prepared by metal mould casting technique, the structures and mechanical properties were investigated. The alloys were mainly composed of alpha-Mg solid solution and beta-phase. With increasing Gd content, Mg5RE phase increased and the grain was refined. The Mg-5Y-3Nd-2Gd-0.6Zr alloy exhibited highest ultimate tensile strength and Mg-5Y-3Nd-0.6Zr alloy showed highest yield strength at room temperature. With increasing amount of Gd, the thermal resistance was improved. The Mg-5Y-3Nd-4Gd-0.6Zr alloy exhibited highest UTS and YS at 250 degrees C, they were about 1.27 times higher than those of Gd-free alloy, which was mainly attributed to the increase of the beta-phase and Mg5RE strengthening phase.
Resumo:
Ti45Zr35Ni20-xPdx (x = 0, 1, 3, 5 and 7, at%) alloys were prepared by melt-spinning. The phase structure and electrochemical hydrogen storage performances of melt-spun alloys were investigated. The melt-spun alloys were icosahedral quasicrystalline phase, and the quasi-lattice constant increased with increasing x value. The maximum discharge capacity of alloy electrodes increased from 79 mAh/g (x = 0) to 148 mAh/g (x = 7). High-rate dis-chargeability and cycling stability were also enhanced with the increase of Pd content. The improvement in the electrochemical hydrogen storage characteristics may be ascribed to better electrochemical activity and oxidation resistance of Pd than that of Ni.
Resumo:
Ti-Zr-Co alloys have been fabricated and characterized, and their catalytic performance was discussed for the oxidation of cyclohexane with oxygen under solvent-free condition. The icosahedral quasicrystalline phase (I-phase)-forming ability of Ti-Zr-Co alloys with different compositions was discussed, and it was confirmed that I-phase could be formed as a dominating phase at the Ti-rich composition region from Ti53Zr27Co20 to Ti75Zr5Co20 in as-cast alloys. The composition and microstructure of Ti-Zr-Co alloys present crucial influences on its catalytic activity and selectivity in the oxidation of cyclohexane. The influences of some reaction parameters such as temperature, reaction time, and catalyst amounts were also investigated. Ti70Zr10Co20 alloy containing quasicrystal microstructure showed good catalytic performance with a 6.8% conversion of cyclohexane and 90.4% selectivity of cyclohexanol and cyclohexanone. It behaves as an efficient heterogeneous catalyst for the oxidation of cyclohexane and could be recycled five times without loss in activity and selectivity.
Resumo:
Sr2Mg(BO3)(2) thermoluminescence (TL) phosphor was synthesized by a high temperature solid state reaction and the effect of Li+, Bi3+, Gd3+ or Ti4+ as a codopant on TL of Sr2Mg(BO3)(2) : Dy was investigated. The results show that Li+ as a codopant improves the emission intensity of high temperature TL peak of Sr2Mg(BO3)(2) : Dy phosphor whereas the addition of Bi3+, Gd3+ or Ti3+ leads to the decrease of TL intensity. The TL emission bands of Sr2Mg(BO3)(2) : Dy phosphors with Li+, Bi3+, Gd3+ or Ti4+ as a codopant are situated at 480, 579, 662 and 755 nm, which were attributed to the characteristic F-4(9/2)-> H-6(15/2), F-4(9/2)-> H-6(13/2), F-4(9/2)-> H-6(11/2) and F-4(9/2)-> H-6(9/2) transitions of Dy3+ ion, consistent with the emission of Sr2Mg(BO3)(2) : Dy phosphors. The kinetics parameters of 234 degrees C TL peak of Sr2Mg(BO3)(2) Dy-0.04(3+), (Li-0.04(+)) phosphor with the values of trap depth E=1.1 eV, frequency factor s=6.3 x 10(9) s(-1) were estimated by a peak shape method, which obey the second order kinetics.
Resumo:
Ti44Zr32Ni22Cu2 and Ti41Zr29Ni28Cu2 alloys were prepared by the melt-spinning method. The phase structure was analyzed by X-ray diffraction, and the electrochemical performances of the melt-spun alloys were investigated. The results indicated that the Ti44Zr32Ni22Cu2 alloy was composed of the icosahedral quasicrystals and amorphous phases, and the Ti41Zr29Ni28Cu2 alloy comprised icosahedral quasicrystals, amorphous, and Laves phases. The maximum discharge capacity was 141 mAh/g for the Ti44Zr32Ni22Cu2 alloy and 181 mAh/g for the Ti41Zr29Ni28Cu2 alloy, respectively. The Ti41Zr29Ni28Cu2 alloy also showed a better high-rate dischargeabifity and cycling stability. The better electrochemical properties should be ascribed to the high content of Ni, which was beneficial to the electrochemical kinetic properties and made the alloy more resistant to oxidation, as well as to the Laves phase in the Ti41Zr29Ni28Cu2 alloy, which could work as the electro-catalyst and the micro-current collector.
Resumo:
In this study, compositional dependence of age hardening response and tensile properties were investigated for Mg-10G(d-x)Y-0.4Zr (x = 1, 3, 5 wt.%) alloys. With increasing Y content, the age hardening response of the alloys enhanced and tensile properties increased. The Mg-10Gd-5Y-0.4Zr alloy exhibited maximum tensile strength and yield strength at aged-peak hardness, and the values were 302 MPa and 289 MPa at room temperature, and 340 MPa and 267 MPa at 250 degrees C, respectively. The strong peak age hardening was attributed to the precipitation of prismatic beta' plates in a triangular arrangement. The cubic shaped beta phase was also observed at grain boundaries. The remarkable improvement in strength is associated with a uniform and high dense distribution of beta' and cubic shaped beta precipitate phases in Mg matrix. Elongation of Mg-10Gd-0.4Zr alloys decreased with increasing Y content, and the elongation of Mg-10Gd-5Y-0.4Zr alloy was less than 3% below 250 degrees C, whereas the alloys containing I wt.% and 3 wt.% Y exhibited higher elongation than 5% at room temperature.
Resumo:
尽管多金属氧酸盐 (POMs)的研究已有180多年的历史,但大量的POMs结构在最近几十年才被陆续解析出来[1~4].其中 ,同多钒酸盐由于钒配位几何形状的多样性,结构最为丰富 ,例如:[V4 O12 ]4-[5],[V5O14 ]3-[6],[V10 O2 8]6-[7] ,[V15O4 2 ]9-[8],[V13 O3 4 ]3-[9].值得注意的是,在这些化合物中,钒的化合价均处于最高氧化态+5价.由于+4价钒不易在溶液中(尤其是水中)稳定存在,因此在以往的常压溶液合成中具有混合价态的同多钒酸盐报道很少.与饱和价态的同多钒酸盐相比,混价多钒酸盐具有更为新奇的电荷分布和拓扑学几何构型,并且在 POMs的理论研究和抗病毒药物、电存储材料以及磁性材料等应用领域有特殊的研究和开发价值[1,10,11].因此,制备具有混价的新型同多钒酸盐一直倍受关注.近年来,水热合成技术的引入使同多钒酸盐合成化学迅速发展.水热体系提供了一个特殊的反应环境 [12 ],使制备各种具有混合价态的同多钒酸盐成为可能.Müller等[13]对这一领域开...
Resumo:
中国科学院山西煤炭化学研究所
Resumo:
中国科学院山西煤炭化学研究所
Resumo:
固态金属配位超分子的晶体工程是化学和分子科学最活跃的研究领域之一 ,它不仅因存在内孔和隧道等新颖网络特殊性而具有理论研究价值 ,而且在催化、光学、主 -客体化学以及分子电学等领域中具有巨大的潜在应用价值 [1~ 8] .用于构筑这类功能化合物的方法主要依赖于构筑网络的相互作用 ,即利用分子间的氢键 ,π- π作用及其它的分子间弱的相互作用 .由于 Cu- X体系超分子化合物优异的光学和催化性能 ,它们的合成与表征近来已引起人们的极大兴趣 [9,10 ] .迄今 ,一直未得到 [( Cu I) 2 ( 2 ,2′-bidy) 2 ]及其类似化合物的晶体 ,只是推断其结构可能是通过碘桥形成的二聚体 .我们选用 Cu I,o-phen和 H2 O为原料 ,在水热条件下得到了具有 C— H… I氢键的双核铜卤化合物 1 [( Cu I) 2 ( o- phen) 2 ]的晶体 .单晶结构测定不仅验证了碘桥连接的正确性 ,同时表明二聚体通过不寻常的 C— H…I氢键连接成一维超分子链 ,而链间通过 π- π作用呈现出二维层状超分子网络 .1 实验部分1 .1 单晶的合成 将 Cu I,o- phen和 H2 O按物质的...
Resumo:
报道双-Keggin型四元杂多化合物K10H3[Nd(SiMo7W4O39)2]XH2O(简称[Nd(SiMo7W4)2]13-)聚合物的交替组装多层膜在4-氨基苯甲酸修饰玻碳电极上的制备及其电化学特性。各层的循环伏安行为证明膜的均匀增长,峰电流随层数的增加而增加。与溶液中的电化学行为相比,位于多层膜中的杂多化合物的氧化还原特征峰随着多层膜层数的增加,具有一定程度的形变。该电极具有较高的稳定性。并讨论了pH对其氧化还原行为的影响,考察了该多层膜修饰电极对BrO3-、HNO2和H2O2等的电催化性能。
Resumo:
多金属氧酸盐因其在医药临床、工业催化、功能材料等方面的广泛应用而引起人们的关注 [1~ 6 ] ,其中 ,有关钒化学的研究一直很活跃 ,钒具有与钼、钨明显不同的结构特性 ,钒可以采取 VO4 ,VO5和VO6 方式配位 ,同时 ,钒的价态可以是 + 3,+ 4和 + 5价 .由于钒可采取多种配位方式及多种价态 ,与钼酸盐和钨酸盐相比 ,钒酸盐更具有结构柔顺性 ,同时易形成低价或混合价态物种 .在以往的文献中 ,有关 P- V- O体系多金属氧酸盐的水热合成的研究已有大量的报道 [7] ,在常规溶液合成中 ,人们已对As- V- O体系进行了相对深入的研究 ,而有关水热合成的研究报道却很少 ,已见报道的砷钒化合物有K6 [As6 V15O4 2 ( H2 O) ]· 6H2 O[8,9] ,[As8V14 O4 2 ( H2 O) 1/2 ]4 - [10 ] ,[As8V14 O4 2 ( X) ]6 - [11] ( X=SO2 - 3,SO2 - 4,H2 O) .为了探究水热条件下 As- V- O体系的反应特性 ,我们开展了这方面的研究工作 ,并取得了突破性进展 .本文采用中温水热技术合成了含有机基团...