999 resultados para Zone de convection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geometry of ductile strain localization phenomena is related to the rheology of the deformed rocks. Both qualitative and quantitative rheological properties of natural rocks have been estimated from finite field structures such as folds and shear zones. We apply physical modelling to investigate the relationship between rheology and the temporal evolution of the width and transversal strain distribution in shear zones, both of which have been used previously as rheological proxies. Geologically relevant materials with well-characterized rheological properties (Newtonian, strain hardening, strain softening, Mohr-Coulomb) are deformed in a shear box and observed with Particle Imaging Velocimetry (PIV). It is shown that the width and strain distribution histories in model shear zones display characteristic finite responses related to material properties as predicted by previous studies. Application of the results to natural shear zones in the field is discussed. An investigation of the impact of 3D boundary conditions in the experiments demonstrates that quantitative methods for estimating rheology from finite natural structures must take these into account carefully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fruit drying is a process of removing moisture to preserve fruits by preventing microbial spoilage. It increases shelf life, reduce weight and volume thus minimize packing, storage, and transportation cost and enable storage of food under ambient environment. But, it is a complex process which involves combination of heat and mass transfer and physical property change and shrinkage of the material. In this background, the aim of this paper to develop a mathematical model to simulate coupled heat and mass transfer during convective drying of fruit. This model can be used predict the temperature and moisture distribution inside the fruits during drying. Two models were developed considering shrinkage dependent and temperature dependent moisture diffusivity and the results were compared. The governing equations of heat and mass transfer are solved and a parametric study has been done with Comsol Multiphysics 4.3. The predicted results were validated with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here mixed convection boundary layer flow of a viscous fluid along a heated vertical semi-infinite plate is investigated in a non-absorbing medium. The relationship between convection and thermal radiation is established via boundary condition of second kind on the thermally radiating vertical surface. The governing boundary layer equations are transformed into dimensionless parabolic partial differential equations with the help of appropriate transformations and the resultant system is solved numerically by applying straightforward finite difference method along with Gaussian elimination technique. It is worthy to note that Prandlt number, Pr, is taken to be small (<< 1) which is appropriate for liquid metals. Moreover, the numerical results are demonstrated graphically by showing the effects of important physical parameters, namely, the modified Richardson number (or mixed convection parameter), Ri*, and surface radiation parameter, R, in terms of local skin friction and local Nusselt number coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the effect of nano particles on natural convection of water based nanofluids contained in an open rectangular cavity is carried out numerically. The flow pattern and heat transfer characteristics are studied for different values of volume fraction in the range 0   0.2 , Rayleigh number in the range 9 1 Ra 10 and the nano particles with different thermo physical properties. It was found that for low Rayleigh numbers, heat transfer exhibits a decreasing trend for increasing values of volume fraction of oxide nanofluids, whereas for higher values of Rayleigh numbers, an increasing trend of heat transfer was observed due to increase in the volume fraction of nanofluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, natural convection heat transfer and buoyancy driven flows have been investigated in a right angled triangular enclosure. The heater located on the bottom wall while the inclined wall is colder and the remaining walls are maintained as adiabatic. Governing equations of natural convection are solved through the finite volume approach, in which buoyancy is modeled via the Boussinesq approximation. Effects of different parameters such as Rayleigh number, aspect ratio, prantdl number and heater location are considered. Results show that heat transfer increases when the heater is moved toward the right corner of the enclosure. It is also revealed that increasing the Rayleigh number, increases the strength of free convection regime and consequently increases the value of heat transfer rate. Moreover, larger aspect ratio enclosure has larger Nusselt number value. In order to have better insight, streamline and isotherms are shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical investigation on mixed convection of a two-dimensional incompressible laminar flow over a horizontal flat plate with streamwise sinusoidal distribution of surface temperature has been performed for different values of Rayleigh number, Reynolds number and frequency of periodic temperature for constant Prandtl number and amplitude of periodic temperature. Finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm basis numerical scheme has been employed. The investigating parameters are the Rayleigh number, the Reynolds number and frequency of periodic temperature. The effect of variation of individual investigating parameters on mixed convection flow characteristics has been studied to observe the hydrodynamic and thermal behavior for while keeping the other parameters constant. The fluid considered in this study is air with Prandtl number 0.72. The results are obtained for the Rayleigh number range of 102 to 104, Reynolds number ranging from 1 to 100 and the frequency of periodic temperature from 1 to 5. Isotherms, streamlines, average and local Nusselt numbers are presented to show the effect of the different values of aforementioned investigating parameters on fluid flow and heat transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of MHD natural convection boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed in the presence of strong cross magnetic field with radiative heat transfer. In the analysis radiative heat flux is considered by adopting optically thick radiation limit. Attempt is made to obtain the solutions valid for liquid metals by taking Pr≪1. Boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation (SFF) and primitive variable formulation (PVF). Non-similar equations obtained from SFF are then simulated by implicit finite difference (Keller-box) method whereas parabolic partial differential equations obtained from PVF are integrated numerically by hiring direct finite difference method over the entire range of local Hartmann parameter, $xi$ . Further, asymptotic solutions are also obtained for large and small values of local Hartmann parameter $xi$ . A favorable agreement is found between the results for small, large and all values of $xi$ . Numerical results are also demonstrated graphically by showing the effect of various physical parameters on shear stress, rate of heat transfer, velocity and temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady boundary-layer development for thermomagnetic convection of paramagnetic fluids inside a square cavity has been considered in this study. The cavity is placed in a microgravity condition (no gravitation acceleration) and under a uniform magnetic field which acts vertically. A ramp temperature boundary condition is applied on left vertical side wall of the cavity where the temperature initially increases with time up to some specific time and maintain constant thereafter. A distinct magnetic convection boundary layer is developed adjacent to the left vertical wall due to the effect of the magnetic body force generated on the paramagnetic fluid. An improved scaling analysis has been performed using triple-layer integral method and verified by numerical simulations. The Prandtl number has been chosen greater than unity varied over 5-100. Moreover, the effect of various values of the magnetic parameter and magnetic Rayleigh number on the fluid flow and heat transfer has been shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, natural convection boundary layer flow of thermally radiating fluid along a heated vertical wavy surface is analyzed. Here, the radiative component of heat flux emulates the surface temperature. Governing equations are reduced to dimensionless form, subject to the appropriate transformation. Resulting dimensionless equations are transformed to a set of parabolic partial differential equations by using primitive variable formulation, which are then integrated numerically via iterative finite difference scheme. Emphasis has been given to low Prandtl number fluid. The numerical results obtained for the physical parameters, such as, surface radiation parameter, R, and radiative length parameter, ξ, are discussed in terms of local skin friction and Nusselt number coefficients. Comprehensive interpretation of velocity distribution is also given in the form of streamlines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of conduction-convection-radiation on natural convection flow of Newtonian optically thick gray fluid, confined in a non-Darcian porous media square cavity is numerically studied. For the gray fluid consideration is given to Rosseland diffusion approximation. Further assuming that (i) the temperature of the left vertical wall is varying linearly with height, (ii) cooled right vertical and top walls and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the Alternate Direct Implicit method together with the Successive Over Relaxation technique. The investigation of the effect of governing parameters namely the Forschheimer resistance (Γ), the Planck constant (Rd), and the temperature difference (Δ), on flow pattern and heat transfer characteristics has been carried out. It was seen that the reduction of flow and heat transfer occurs as the Forschheimer resistance is increased. On the other hand both the strength of flow and heat transfer increases as the temperature ratio, Δ, is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hard biological materials such as bone possess superior material properties of high stiffness and toughness. Two unique characteristics of bone microstructure are a large aspect ratio of mineralized collagen fibrils (MCF), and an extremely thin and large area of extrafibrillar protein matrix located between the MCF. The objective of this study is to investigate the effects of: (1) MCF aspect ratio, and (2) energy dissipation in extrafibrillar protein matrix on the mechanical behaviour of MCF arrays. In this study, notched specimens of MCF arrays in extrafibrillar protein matrix are subjected to bending. Cohesive zone model was implemented to simulate the failure of extrafibrillar protein matrix. The study reveals that the MCF array with a higher MCF aspect ratio and the MCF array with a higher protein energy dissipation in the interface direction are able to sustain a higher bending force and dissipate higher energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter contains sections titled: Introduction ICZM and sustainable development of coastal zone International legal framework for ICZM Implementation of international legal obligations in domestic arena Concluding remarks References

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerically investigation of free convection heat transfer in a differentially heated trapezoidal cavity filled with non-Newtonian Power-law fluid has been performed in this study. The left inclined surface is uniformly heated whereas the right inclined surface is maintained as uniformly cooled. The top and bottom surfaces are kept adiabatic with initially quiescent fluid inside the enclosure. Finite volume based commercial software FLUENT 14.5 is used to solve the governing equations. Dependency of various flow parameters of fluid flow and heat transfer is analyzed including Rayleigh number, Ra ranging from 10^5 to 10^7, Prandtl number, Pr of 100 to 10,000 and power index, n of 0.6 to 1.4. Outcomes have been reported in terms of isotherms, streamline, and local Nusselt number for various Ra, Pr, n and inclined angles. Grid sensitivity analysis is performed and numerically obtained results have been compared with those results available in the literature and found good agreement.