983 resultados para Zircon, fission track method
Resumo:
Sandstone petrography and mudstone mineralogy and geochemistry of Triassic mudstones and sandstones from continental redbeds of the Malaguide Complex (Betic Cordillera, southern Spain) provide useful information on provenance, palaeoclimate and geodynamics during the early stages of the Pangea break-up, and on their diagenetic evolution. The sandstones are quartzarenites to sub-litharenites, with minor lithic fragments and rare feldspars. The mudstone samples show a PAAS like elemental distribution. The samples likely record recycling processes from their metasedimentary basement rocks that significantly affected the weathering indices, and monitors cumulative effects, including a first cycle of weathering at the source rocks. Sandstone composition and chemical–mineralogical features of mudstones record a provenance derived from continental block and recycled orogen that were weathered under warm and episodically wet climate. Source areas were located towards the east of the present-day Malaguide outcrops, and were formed by fairly silicic rock types, made up mainly of Palaezoic metasedimentary rocks, similar to those of the Paleozoic underlying series, with subordinate contributions from magmatic–metamorphic sources, and a rare supply from mafic metavolcanic rocks. Clay-mineral distribution of mudstones is dominated by illite and illite/smectite mixed-layer that result from differences in provenance, weathering, and burial/temperature history. Illite crystallinity values, illitization of kaolinite, occurrence of typical authigenic minerals and apatite fission-track studies, coupled with a subsidence analysis of the whole Malaguide succession suggest burial depths of at least 4–6 km with temperatures of 140–160 °C, typical of the burial diagenetic stage, and confirm the Middle Miocene exhumation of the Betic Internal Domain tectonic stack topped by the Malaguide Complex.
Resumo:
Apatite (U-Th-Sm)/He (AHe) thermochronology is increasingly used for reconstructing geodynamic processes of the upper crust and the surface. Results of AHe thermochronology, however, are often in conflict with apatite fission track (AFT) thermochronology, yielding an inverted age-relationship with AHe dates older than AFT dates of the same samples. This effect is mainly explained by radiation damage of apatite, either impeding He diffusion or causing non-thermal annealing of fission tracks. So far, systematic age inversions have only been described for old and slowly cooled terranes, whereas for young and rapidly cooled samples 'too old' AHe dates are usually explained by the presence of undetected U and/or Th-rich micro-inclusions. We report apatite (U-Th-Sm)/He results for rapidly cooled volcanogenic samples deposited in a deep ocean environment with a relatively simple post-depositional thermal history. Robust age constraints are provided independently through sample biostratigraphy. All studied apatites have low U contents (< 5 ppm on average). While AFT dates are largely in agreement with deposition ages, most AHe dates are too old. For leg 43, where deposition age of sampled sediment is 26.5-29.5 Ma, alpha-corrected average AHe dates are up to 45 Ma, indicating overestimations of AHe dates up to 50%. This is explained by He implantation from surrounding host U-Th rich sedimentary components and it is shown that AHe dates can be "corrected" by mechanically abrading the outer part of grains. We recommend that particularly for low U-Th-apatites the possibility of He implantation should be carefully checked before considering the degree to which the alpha-ejection correction should be applied.
Resumo:
Taupo Volcanic Zone (TVZ), in the North Island, New Zealand, is arguably the most active Quaternary rhyolitic system in the world. Numerous and widespread rhyolitic tephra layers, sourced from the TVZ, form valuable chronostratigraphic markers in onshore and offshore sedimentary sequences. In deep-sea cores from Ocean Drilling Program (ODP) Leg 181 Sites 1125, 1124, 1123 and 1122, located east of New Zealand, ca 100 tephra beds are recognised post-dating the Plio-Pleistocene boundary at 1.81 Ma. These tephras have been dated by a combination of magnetostratigraphy, orbitally tuned stable-isotope data and isothermal plateau fission track ages. The widespread occurrence of ash offshore to the east of New Zealand is favoured by the small size of New Zealand, the explosivity of the mainly plinian and ignimbritic eruptions and the prevailing westerly wind field. Although some tephras can be directly attributed to known TVZ eruptions, there are many more tephras represented within ODP-cores that have yet to be recognised in near-source on-land sequences. This is due to proximal source area erosion and/or deep burial as well as the adverse effect of vapour phase alteration and devitrification within near-source welded ignimbrites. Despite these difficulties, a number of key deep-sea tephras can be reliably correlated to equivalent-aged tephra exposed in uplifted marine back-arc successions of Wanganui Basin where an excellent chronology has been developed based on magnetostratigraphy, orbitally calibrated sedimentary cycles and isothermal plateau fission track ages on tephra. Significant Pleistocene tephra markers include: the Kawakawa, Omataroa, Rangitawa/Onepuhi, Kaukatea, Kidnappers-B, Potaka, Unit D/Ahuroa, Ongatiti, Rewa, Sub-Rewa, Pakihikura, Ototoka and Table Flat Tephras. Six other tephra layers are correlated between ODP-core sites but have yet to be recognised within onshore records. The identification of Pleistocene TVZ-sourced tephras within the ODP record, and their correlation to Wanganui Basin and other onshore sites is a significant advance as it provides: (1) an even more detailed history of the TVZ than can be currently achieved from the near-source record, (2) a high-resolution tephrochronologic framework for future onshore-offshore paleoenvironmental reconstructions, and (3) well-dated tephra beds correlated from the offshore ODP sites with astronomically tuned timescales provide an opportunity to critically evaluate the chronostratigraphic framework for onshore Plio-Pleistocene sedimentary sequences (e.g. Wanganui Basin, cf. Naish et al. (1998, doi:10.1016/S0277-3791(97)00075-9).
Resumo:
Growth rates of nine ferromanganese nodules collected from the Southeast Pacific were estimated using the alpha radiogpaphic technigue. Growth rates range from 1 to 16 mm per million years. In three nodules measurements were made on two opposite sides; two of them showed no growth in one of measured directions during the last 300 ky, whereas in the third nodule growth rates on the opposite sides differ by factor 2. Average sedimentation rate of deposits underlying the nodules estimated by the radiocarbon and excess 230Th methods, were 4 mm/1000 years with rather minor variations. Difference between sedimentation rates and nodule growth rates is caused by activity of benthic fauna, as suggested by inversion of radiocarbon dates with depth.
Resumo:
The geological overview map was compiled from 15 geological maps (1 : 25,000) and is based on Jacobs et al. 1996. The topographic basemaps were adapted from unpublished 1:250,000 provisional topographic maps, Institut f. Angewandte Geodäsie, Frankfurt, 1983. Part of the contour lines are from Radarsat (Liu et al. 2001).
Resumo:
The comparison of Mn/Fe, Co/Ni, Co/Fe, Ni/Mn, and Cu/Fe ratios is presented and it is noticed that Co/Ni and Ni/Mn ratios of nodules fairly coincide with those of coexisting sediments. This agreement suggests that Mn, Ni, and Co are accumulated in both nodules and sediments at about the same rates. According to the calculation of Somayajulu et al. similar consideration is also applicable to Cu. Results are, however, implying that Cu co-precipitates with Fe, rather than Mn.
Resumo:
Graywackes and shales of the Bol'shoi Lyakhov Island originally attributed to Mesozoic were subsequently considered based on microfossils as Late Proterozoic in age. At present, these sediments in the greater part of the island are dated back to Permian based on palynological assemblages. In the examined area of the island, this siliciclastic complex is intensely deformed and tectonically juxtaposed with blocks of oceanic and island-arc rocks exhumed along the South Anyui suture. The complex is largely composed of turbidites with members displaying hummocky cross-stratification. Studied mineral and geochemical charac¬teristics of the rocks defined three provenances of clastic material: volcanic island arc, sedimentary cover and/or basement of an ancient platform, and exotic blocks of oceanic and island-arc rocks such as serpentinites and amphibolites. All rock associations represent elements of an orogenic structure that originated by collision of the New Siberian continental block with the Anyui-Svyatoi Nos island arc. Flyschoid sediments accumu¬lated in a foredeep in front of the latter structure in the course of collision. Late Jurassic volcanics belonging to the Anyui-Svyatoi Nos island arc determine the lower age limit of syncollision siliciclastic rocks. Presence of Late Jurassic zircons in sandstones of the flyschoid sequence in the Bol'shoi Lyakhov Island is confirmed by fission-track dating. The upper age limit is determined by Aptian-Albian postcollision granites and diorites intruding the siliciclastic complex. Consequently, the flyschoid sequence is within stratigraphic range from the terminal Late Jurassic to Neocomian. It appears that Permian age of sediments suggested earlier is based on redeposited organic remains. The same Late Jurassic-Neocomian age and lithology are characteristic of fossiliferous siliciclastic sequences of the Stolbovoi and Malyi Lyakhov islands, the New Siberian Archipelago, and of graywackes in the South Anyui area in the Chukchi Peninsula. All these sediments accumulated in a spacious foredeep that formed in the course the late Cimmerian orogeny along the southern margin of the Arctic conti¬nental block.
Resumo:
Fold-and-thrust belts are prominent structures that occur at the front of compressional orogens. To unravel the tectonic and metamorphic evolution of such complexes, kinematic investigations, quantitative microstructural analysis and geothermometry (calcite–graphite, calcite–dolomite) were performed on carbonate mylonites from thrust faults of the Helvetic nappe stack in Central Switzerland. Paleo-isotherms of peak temperature conditions and cooling stages (fission track) of the nappe pile were reconstructed in a vertical section and linked with the microstructural and kinematic evolution. Mylonitic microstructures suggest that under metamorphic conditions close to peak temperature, strain was highly localized within thrust faults where deformation temperatures spatially continuously increased in both directions, from N to S within each nappe and from top–down in the nappe stack, covering a temperature range of 180–380 °C. Due to the higher metamorphic conditions, thrusting of the lowermost nappe, the Doldenhorn nappe, was accompanied by a much more pronounced nappe internal ductile deformation of carbonaceous rock types than was the case for the overlying Wildhorn- and Gellihorn nappes. Ongoing thrusting brought the Doldenhorn nappe closer to the surface. The associated cooling resulted in a freezing in of the paleo-isotherms of peak metamorphic conditions. Contemporaneous shearing localized in the basal thrust, initially still in the ductile deformation regime and finally as brittle faulting and cataclasis inducing ultimately an inverse metamorphic zonation. With ongoing exhumation and the formation of the Helvetic antiformal nappe stack, a bending of large-scale tectonic structures (thrusts, folds), peak temperature isotherms and cooling isotherms occurred. While this local bending can directly be attributed to active deformation underneath the section investigated up to times of 2–3 ma, a more homogeneous uplift of the entire region is suggested for the very late and still active exhumation stage.