951 resultados para Worst Case Execution Time (WCET)
Resumo:
El uso de aritmética de punto fijo es una opción de diseño muy extendida en sistemas con fuertes restricciones de área, consumo o rendimiento. Para producir implementaciones donde los costes se minimicen sin impactar negativamente en la precisión de los resultados debemos llevar a cabo una asignación cuidadosa de anchuras de palabra. Encontrar la combinación óptima de anchuras de palabra en coma fija para un sistema dado es un problema combinatorio NP-hard al que los diseñadores dedican entre el 25 y el 50 % del ciclo de diseño. Las plataformas hardware reconfigurables, como son las FPGAs, también se benefician de las ventajas que ofrece la aritmética de coma fija, ya que éstas compensan las frecuencias de reloj más bajas y el uso más ineficiente del hardware que hacen estas plataformas respecto a los ASICs. A medida que las FPGAs se popularizan para su uso en computación científica los diseños aumentan de tamaño y complejidad hasta llegar al punto en que no pueden ser manejados eficientemente por las técnicas actuales de modelado de señal y ruido de cuantificación y de optimización de anchura de palabra. En esta Tesis Doctoral exploramos distintos aspectos del problema de la cuantificación y presentamos nuevas metodologías para cada uno de ellos: Las técnicas basadas en extensiones de intervalos han permitido obtener modelos de propagación de señal y ruido de cuantificación muy precisos en sistemas con operaciones no lineales. Nosotros llevamos esta aproximación un paso más allá introduciendo elementos de Multi-Element Generalized Polynomial Chaos (ME-gPC) y combinándolos con una técnica moderna basada en Modified Affine Arithmetic (MAA) estadístico para así modelar sistemas que contienen estructuras de control de flujo. Nuestra metodología genera los distintos caminos de ejecución automáticamente, determina las regiones del dominio de entrada que ejercitarán cada uno de ellos y extrae los momentos estadísticos del sistema a partir de dichas soluciones parciales. Utilizamos esta técnica para estimar tanto el rango dinámico como el ruido de redondeo en sistemas con las ya mencionadas estructuras de control de flujo y mostramos la precisión de nuestra aproximación, que en determinados casos de uso con operadores no lineales llega a tener tan solo una desviación del 0.04% con respecto a los valores de referencia obtenidos mediante simulación. Un inconveniente conocido de las técnicas basadas en extensiones de intervalos es la explosión combinacional de términos a medida que el tamaño de los sistemas a estudiar crece, lo cual conlleva problemas de escalabilidad. Para afrontar este problema presen tamos una técnica de inyección de ruidos agrupados que hace grupos con las señales del sistema, introduce las fuentes de ruido para cada uno de los grupos por separado y finalmente combina los resultados de cada uno de ellos. De esta forma, el número de fuentes de ruido queda controlado en cada momento y, debido a ello, la explosión combinatoria se minimiza. También presentamos un algoritmo de particionado multi-vía destinado a minimizar la desviación de los resultados a causa de la pérdida de correlación entre términos de ruido con el objetivo de mantener los resultados tan precisos como sea posible. La presente Tesis Doctoral también aborda el desarrollo de metodologías de optimización de anchura de palabra basadas en simulaciones de Monte-Cario que se ejecuten en tiempos razonables. Para ello presentamos dos nuevas técnicas que exploran la reducción del tiempo de ejecución desde distintos ángulos: En primer lugar, el método interpolativo aplica un interpolador sencillo pero preciso para estimar la sensibilidad de cada señal, y que es usado después durante la etapa de optimización. En segundo lugar, el método incremental gira en torno al hecho de que, aunque es estrictamente necesario mantener un intervalo de confianza dado para los resultados finales de nuestra búsqueda, podemos emplear niveles de confianza más relajados, lo cual deriva en un menor número de pruebas por simulación, en las etapas iniciales de la búsqueda, cuando todavía estamos lejos de las soluciones optimizadas. Mediante estas dos aproximaciones demostramos que podemos acelerar el tiempo de ejecución de los algoritmos clásicos de búsqueda voraz en factores de hasta x240 para problemas de tamaño pequeño/mediano. Finalmente, este libro presenta HOPLITE, una infraestructura de cuantificación automatizada, flexible y modular que incluye la implementación de las técnicas anteriores y se proporciona de forma pública. Su objetivo es ofrecer a desabolladores e investigadores un entorno común para prototipar y verificar nuevas metodologías de cuantificación de forma sencilla. Describimos el flujo de trabajo, justificamos las decisiones de diseño tomadas, explicamos su API pública y hacemos una demostración paso a paso de su funcionamiento. Además mostramos, a través de un ejemplo sencillo, la forma en que conectar nuevas extensiones a la herramienta con las interfaces ya existentes para poder así expandir y mejorar las capacidades de HOPLITE. ABSTRACT Using fixed-point arithmetic is one of the most common design choices for systems where area, power or throughput are heavily constrained. In order to produce implementations where the cost is minimized without negatively impacting the accuracy of the results, a careful assignment of word-lengths is required. The problem of finding the optimal combination of fixed-point word-lengths for a given system is a combinatorial NP-hard problem to which developers devote between 25 and 50% of the design-cycle time. Reconfigurable hardware platforms such as FPGAs also benefit of the advantages of fixed-point arithmetic, as it compensates for the slower clock frequencies and less efficient area utilization of the hardware platform with respect to ASICs. As FPGAs become commonly used for scientific computation, designs constantly grow larger and more complex, up to the point where they cannot be handled efficiently by current signal and quantization noise modelling and word-length optimization methodologies. In this Ph.D. Thesis we explore different aspects of the quantization problem and we present new methodologies for each of them: The techniques based on extensions of intervals have allowed to obtain accurate models of the signal and quantization noise propagation in systems with non-linear operations. We take this approach a step further by introducing elements of MultiElement Generalized Polynomial Chaos (ME-gPC) and combining them with an stateof- the-art Statistical Modified Affine Arithmetic (MAA) based methodology in order to model systems that contain control-flow structures. Our methodology produces the different execution paths automatically, determines the regions of the input domain that will exercise them, and extracts the system statistical moments from the partial results. We use this technique to estimate both the dynamic range and the round-off noise in systems with the aforementioned control-flow structures. We show the good accuracy of our approach, which in some case studies with non-linear operators shows a 0.04 % deviation respect to the simulation-based reference values. A known drawback of the techniques based on extensions of intervals is the combinatorial explosion of terms as the size of the targeted systems grows, which leads to scalability problems. To address this issue we present a clustered noise injection technique that groups the signals in the system, introduces the noise terms in each group independently and then combines the results at the end. In this way, the number of noise sources in the system at a given time is controlled and, because of this, the combinato rial explosion is minimized. We also present a multi-way partitioning algorithm aimed at minimizing the deviation of the results due to the loss of correlation between noise terms, in order to keep the results as accurate as possible. This Ph.D. Thesis also covers the development of methodologies for word-length optimization based on Monte-Carlo simulations in reasonable times. We do so by presenting two novel techniques that explore the reduction of the execution times approaching the problem in two different ways: First, the interpolative method applies a simple but precise interpolator to estimate the sensitivity of each signal, which is later used to guide the optimization effort. Second, the incremental method revolves on the fact that, although we strictly need to guarantee a certain confidence level in the simulations for the final results of the optimization process, we can do it with more relaxed levels, which in turn implies using a considerably smaller amount of samples, in the initial stages of the process, when we are still far from the optimized solution. Through these two approaches we demonstrate that the execution time of classical greedy techniques can be accelerated by factors of up to ×240 for small/medium sized problems. Finally, this book introduces HOPLITE, an automated, flexible and modular framework for quantization that includes the implementation of the previous techniques and is provided for public access. The aim is to offer a common ground for developers and researches for prototyping and verifying new techniques for system modelling and word-length optimization easily. We describe its work flow, justifying the taken design decisions, explain its public API and we do a step-by-step demonstration of its execution. We also show, through an example, the way new extensions to the flow should be connected to the existing interfaces in order to expand and improve the capabilities of HOPLITE.
Resumo:
A engenharia é a ciência que transforma os conhecimentos das disciplinas básicas aplicadas a fatos reais. Nosso mundo está rodeado por essas realizações da engenharia, e é necessário que as pessoas se sintam confortáveis e seguras nas mesmas. Assim, a segurança se torna um fator importante que deve ser considerado em qualquer projeto. Na engenharia naval, um apropriado nível de segurança e, em consequência, um correto desenho estrutural é baseado, atualmente, em estudos determinísticos com o objetivo de obter estruturas capazes de suportar o pior cenário possível de solicitações durante um período de tempo determinado. A maior parte das solicitações na estrutura de um navio se deve à ação da natureza (ventos, ondas, correnteza e tempestades), ou, ainda, aos erros cometidos por humanos (explosões internas, explosões externas e colisões). Devido à aleatoriedade destes eventos, a confiabilidade estrutural de um navio deveria ser considerada como um problema estocástico sob condições ambientais bem caracterizadas. A metodologia probabilística, baseada em estatística e incertezas, oferece uma melhor perspectiva dos fenômenos reais que acontecem na estrutura dos navios. Esta pesquisa tem como objetivo apresentar resultados de confiabilidade estrutural em projetos e planejamento da manutenção para a chapa do fundo dos cascos dos navios, as quais são submetidas a esforços variáveis pela ação das ondas do mar e da corrosão. Foram estudados modelos estatísticos para a avaliação da estrutura da viga-navio e para o detalhe estrutural da chapa do fundo. Na avaliação da estrutura da viga-navio, o modelo desenvolvido consiste em determinar as probabilidades de ocorrência das solicitações na estrutura, considerando a deterioração por corrosão, com base numa investigação estatística da variação dos esforços em função das ondas e a deterioração em função de uma taxa de corrosão padrão recomendada pela DET NORSKE VERITAS (DNV). A abordagem para avaliação da confiabilidade dependente do tempo é desenvolvida com base nas curvas de resistências e solicitações (R-S) determinadas pela utilização do método de Monte Carlo. Uma variação estatística de longo prazo das adversidades é determinada pelo estudo estatístico de ondas em longo prazo e ajustada por uma distribuição com base numa vida de projeto conhecida. Constam no trabalho resultados da variação da confiabilidade ao longo do tempo de um navio petroleiro. O caso de estudo foi simplificado para facilitar a obtenção de dados, com o objetivo de corroborar a metodologia desenvolvida.
Resumo:
Tool path generation is one of the most complex problems in Computer Aided Manufacturing. Although some efficient strategies have been developed, most of them are only useful for standard machining. However, the algorithms used for tool path computation demand a higher computation performance, which makes the implementation on many existing systems very slow or even impractical. Hardware acceleration is an incremental solution that can be cleanly added to these systems while keeping everything else intact. It is completely transparent to the user. The cost is much lower and the development time is much shorter than replacing the computers by faster ones. This paper presents an optimisation that uses a specific graphic hardware approach using the power of multi-core Graphic Processing Units (GPUs) in order to improve the tool path computation. This improvement is applied on a highly accurate and robust tool path generation algorithm. The paper presents, as a case of study, a fully implemented algorithm used for turning lathe machining of shoe lasts. A comparative study will show the gain achieved in terms of total computing time. The execution time is almost two orders of magnitude faster than modern PCs.
Resumo:
LIDAR (LIght Detection And Ranging) first return elevation data of the Boston, Massachusetts region from MassGIS at 1-meter resolution. This LIDAR data was captured in Spring 2002. LIDAR first return data (which shows the highest ground features, e.g. tree canopy, buildings etc.) can be used to produce a digital terrain model of the Earth's surface. This dataset consists of 74 First Return DEM tiles. The tiles are 4km by 4km areas corresponding with the MassGIS orthoimage index. This data set was collected using 3Di's Digital Airborne Topographic Imaging System II (DATIS II). The area of coverage corresponds to the following MassGIS orthophoto quads covering the Boston region (MassGIS orthophoto quad ID: 229890, 229894, 229898, 229902, 233886, 233890, 233894, 233898, 233902, 233906, 233910, 237890, 237894, 237898, 237902, 237906, 237910, 241890, 241894, 241898, 241902, 245898, 245902). The geographic extent of this dataset is the same as that of the MassGIS dataset: Boston, Massachusetts Region 1:5,000 Color Ortho Imagery (1/2-meter Resolution), 2001 and was used to produce the MassGIS dataset: Boston, Massachusetts, 2-Dimensional Building Footprints with Roof Height Data (from LIDAR data), 2002 [see cross references].
Resumo:
This dataset consists of 2D footprints of the buildings in the metropolitan Boston area, based on tiles in the orthoimage index (orthophoto quad ID: 229890, 229894, 229898, 229902, 233886, 233890, 233894, 233898, 233902, 237890, 237894, 237898, 237902, 241890, 241894, 241898, 241902, 245898, 245902). This data set was collected using 3Di's Digital Airborne Topographic Imaging System II (DATIS II). Roof height and footprint elevation attributes (derived from 1-meter resolution LIDAR (LIght Detection And Ranging) data) are included as part of each building feature. This data can be combined with other datasets to create 3D representations of buildings and the surrounding environment.
Resumo:
The macroeconomic results achieved by Belarus in 2012 laid bare the weakness and the inefficiency of its economy. Belarus’s GDP and positive trade balance were growing in the first half of last year. However, this trend was reversed when Russia blocked the scheme of extremely lucrative manipulations in the re-export of Russian petroleum products by Belarus and when the demand for potassium fertilisers fell on the global market. It became clear once again that the outdated Belarusian model of a centrally planned economy is unable to generate sustainable growth, and the Belarusian economy needs thorough structural reforms. Nevertheless, President Alyaksandr Lukashenka consistently continues to block any changes in the system and at the same time expects that the economic indicators this year will reach levels far beyond the possibilities of the Belarusian economy. Therefore, there is a risk that the Belarusian government may employ – as they used to do – instruments aimed at artificially stimulating domestic demand, including money creation. This may upset the relative stability of state finances, which the regime managed to achieve last year. The worst case scenario would see a repeat of what happened in 2011, when a serious financial crisis occurred, forcing Minsk to make concessions (including selling the national network of gas pipelines) to Moscow, its only real source of loans. It thus cannot be ruled out that also this time the only way to recover from the slump will be to receive additional loan support and energy subsidies from Russia at the expense of selling further strategic companies to Russian investors.
Resumo:
Atualmente, assiste-se na nossa sociedade a um recurso e uso massivo de equipamentos eletrónicos portáteis. Este facto, aliado à competitividade de mercado, exigiu o desenvolvimento desses equipamentos com o intuito de melhorar a sua gestão de potência e, obter, consequentemente, maior autonomia e rendimento. Assim, na gestão de potência de um SoC são os reguladores de tensão que assumem um papel de extrema importância. O trabalho realizado ao longo da presente dissertação pressupõe o projeto de um regulador linear de tensão do tipo LDO em tecnologia HV-CMOS, capaz de suportar tensões de entrada de 12V com vista à alimentação de blocos funcionais RF-CMOS com 3,3V e uma corrente de 100mA. Foi implementado através do processo CMOS de 0.35μm de 50V da Austria Micro Systems. A corrente de quiescente do regulador linear de tensão que determina a eficiência de corrente é de 120,22μA. Possui uma eficiência de corrente de 99,88% e um rendimento de 82,46% quando a tensão mínima de entrada é utilizada. O regulador linear de tensão possui uma tensão de dropout de 707mV. A estabilidade do sistema é mantida mesmo com transições de carga de 10μA para 100mA. O regulador possui um tempo de estabelecimento inferior a 2,4μs e uma variação da tensão de saída relativamente ao seu valor nominal inferior a 18mV, ambos para o pior caso. Porém, este regulador possui um undershoot e um overshoot de +- 1,85V.
Resumo:
The triggering mechanism and the temporal evolution of large flood events, especially of worst-case scenarios, are not yet fully understood. Consequently, the cumulative losses of extreme floods are unknown. To study the link between weather conditions, discharges and flood losses it is necessary to couple atmospheric, hydrological, hydrodynamic and damage models. The objective of the M-AARE project is to test the potentials and opportunities of a model chain that relates atmospheric conditions to flood losses or risks. The M-AARE model chain is a set of coupled models consisting of four main components: the precipitation module, the hydrology module, the hydrodynamic module, and the damage module. The models are coupled in a cascading framework with harmonized time-steps. First exploratory applications show that the one way coupling of the WRF-PREVAH-BASEMENT models has been achieved and provides promising new insights for a better understanding of key aspects in flood risk analysis.
Resumo:
Partial information leakage in deterministic public-key cryptosystems refers to a problem that arises when information about either the plaintext or the key is leaked in subtle ways. Quite a common case is where there are a small number of possible messages that may be sent. An attacker may be able to crack the scheme simply by enumerating all the possible ciphertexts. Two methods are proposed for facing the partial information leakage problem in RSA that incorporate a random element into the encrypted message to increase the number of possible ciphertexts. The resulting scheme is, effectively, an RSA-like cryptosystem which exhibits probabilistic encryption. The first method involves encrypting several similar messages with RSA and then using the Quadratic Residuosity Problem (QRP) to mark the intended one. In this way, an adversary who has correctly guessed two or more of the ciphertexts is still in doubt about which message is the intended one. The cryptographic strength of the combined system is equal to the computational difficulty of factorising a large integer; ideally, this should be feasible. The second scheme uses error-correcting codes for accommodating the random component. The plaintext is processed with an error-correcting code and deliberately corrupted before encryption. The introduced corruption lies within the error-correcting ability of the code, so as to enable the recovery of the original message. The random corruption offers a vast number of possible ciphertexts corresponding to a given plaintext; hence an attacker cannot deduce any useful information from it. The proposed systems are compared to other cryptosystems sharing similar characteristics, in terms of execution time and ciphertext size, so as to determine their practical utility. Finally, parameters which determine the characteristics of the proposed schemes are also examined.
Resumo:
The need to improve the management of language learning organizations in the light of the trend toward mass higher education and of the use of English as a world language was the starting point of this thesis. The thesis aims to assess the relevance, adequacy and the relative success of Total Quality Management (TQM) as a management philosophy. Taking this empirical evidence a TQM-oriented management project in a Turkish Higher Education context, the thesis observes the consequences of a change of organizational culture, with specific reference to teachers' attitudes towards management. Both qualitative and quantitative devices are employed to plot change and the value of these devices for identifying such is considered. The main focus of the thesis is the Soft S's (Shared Values, Style, Staff and Skills) of an organization rather than the Hard S's (System, Structure, Strategy). The thesis is not concerned with the teaching and learning processes, though the PDCA cycle (the Action Research Cycle) did play a part in the project for both teachers and the researcher involved in this study of organizational development. Both before the management project was launched, and at the end of the research period, the external measurement devices (Harrison's Culture Specification Device and Hofstede's VSM) were used to describe the culture of the Centre. During the management project, internal measurement devices were used to record the change including middle-management style change (the researcher in this case). The time period chosen for this study was between September 1991 and June 1994. During this period, each device was administered twice within a specific time period, ranging from a year to 32 months.
Resumo:
Models at runtime can be defined as abstract representations of a system, including its structure and behaviour, which exist in tandem with the given system during the actual execution time of that system. Furthermore, these models should be causally connected to the system being modelled, offering a reflective capability. Significant advances have been made in recent years in applying this concept, most notably in adaptive systems. In this paper we argue that a similar approach can also be used to support the dynamic generation of software artefacts at execution time. An important area where this is relevant is the generation of software mediators to tackle the crucial problem of interoperability in distributed systems. We refer to this approach as emergent middleware, representing a fundamentally new approach to resolving interoperability problems in the complex distributed systems of today. In this context, the runtime models are used to capture meta-information about the underlying networked systems that need to interoperate, including their interfaces and additional knowledge about their associated behaviour. This is supplemented by ontological information to enable semantic reasoning. This paper focuses on this novel use of models at runtime, examining in detail the nature of such runtime models coupled with consideration of the supportive algorithms and tools that extract this knowledge and use it to synthesise the appropriate emergent middleware.
Resumo:
Polarization diverse optical phase conjugation of a 1THz spectral-band 1.14Tb/s DP-QPSK WDM multiplex is demonstrated for the first time, showing a worst case Q2 penalty of 0.9dB over all conjugate wavelengths, polarizations and OSNR. © 2014 OSA.
Resumo:
We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.
Resumo:
In this talk we investigate the usage of spectrally shaped amplified spontaneous emission (ASE) in order to emulate highly dispersed wavelength division multiplexed (WDM) signals in an optical transmission system. Such a technique offers various simplifications to large scale WDM experiments. Not only does it offer a reduction in transmitter complexity, removing the need for multiple source lasers, it potentially reduces the test and measurement complexity by requiring only the centre channel of a WDM system to be measured in order to estimate WDM worst case performance. The use of ASE as a test and measurement tool is well established in optical communication systems and several measurement techniques will be discussed [1, 2]. One of the most prevalent uses of ASE is in the measurement of receiver sensitivity where ASE is introduced in order to degrade the optical signal to noise ratio (OSNR) and measure the resulting bit error rate (BER) at the receiver. From an analytical point of view noise has been used to emulate system performance, the Gaussian Noise model is used as an estimate of highly dispersed signals and has had consider- able interest [3]. The work to be presented here extends the use of ASE by using it as a metric to emulate highly dispersed WDM signals and in the process reduce WDM transmitter complexity and receiver measurement time in a lab environment. Results thus far have indicated [2] that such a transmitter configuration is consistent with an AWGN model for transmission, with modulation format complexity and nonlinearities playing a key role in estimating the performance of systems utilising the ASE channel emulation technique. We conclude this work by investigating techniques capable of characterising the nonlinear and damage limits of optical fibres and the resultant information capacity limits. REFERENCES McCarthy, M. E., N. Mac Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats," 2014 European Conference on IEEE Optical Communication (ECOC), 2014. 2. Ellis, A., N. Mac Suibhne, F. Gunning, and S. Sygletos, “Expressions for the nonlinear trans- mission performance of multi-mode optical fiber," Opt. Express, Vol. 21, 22834{22846, 2013. Vacondio, F., O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J. Antona, and S. Bigo, “On nonlinear distortions of highly dispersive optical coherent systems," Opt. Express, Vol. 20, 1022-1032, 2012.
Resumo:
This dissertation presents and evaluates a methodology for scheduling medical application workloads in virtualized computing environments. Such environments are being widely adopted by providers of "cloud computing" services. In the context of provisioning resources for medical applications, such environments allow users to deploy applications on distributed computing resources while keeping their data secure. Furthermore, higher level services that further abstract the infrastructure-related issues can be built on top of such infrastructures. For example, a medical imaging service can allow medical professionals to process their data in the cloud, easing them from the burden of having to deploy and manage these resources themselves. In this work, we focus on issues related to scheduling scientific workloads on virtualized environments. We build upon the knowledge base of traditional parallel job scheduling to address the specific case of medical applications while harnessing the benefits afforded by virtualization technology. To this end, we provide the following contributions: (1) An in-depth analysis of the execution characteristics of the target applications when run in virtualized environments. (2) A performance prediction methodology applicable to the target environment. (3) A scheduling algorithm that harnesses application knowledge and virtualization-related benefits to provide strong scheduling performance and quality of service guarantees. In the process of addressing these pertinent issues for our target user base (i.e. medical professionals and researchers), we provide insight that benefits a large community of scientific application users in industry and academia. Our execution time prediction and scheduling methodologies are implemented and evaluated on a real system running popular scientific applications. We find that we are able to predict the execution time of a number of these applications with an average error of 15%. Our scheduling methodology, which is tested with medical image processing workloads, is compared to that of two baseline scheduling solutions and we find that it outperforms them in terms of both the number of jobs processed and resource utilization by 20–30%, without violating any deadlines. We conclude that our solution is a viable approach to supporting the computational needs of medical users, even if the cloud computing paradigm is not widely adopted in its current form.