953 resultados para Wireless power transfer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5°C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design of low-cost, conformal UHF antennas and RFID tags on two types of cork substrates: 1) natural cork and 2) agglomerate cork. Such RFID tags find an application in wine bottle and barrel identification, and in addition, they are suitable for numerous antenna-based sensing applications. This paper includes the high-frequency characterization of the selected cork substrates considering the anisotropic behavior of such materials. In addition, the variation of their permittivity values as a function of the humidity is also verified. As a proof-of-concept demonstration, three conformal RFID tags have been implemented on cork, and their performance has been evaluated using both a commercial Alien ALR8800 reader and an in-house measurement setup. The reading of all tags has been checked, and a satisfactory performance has been verified, with reading ranges spanning from 0.3 to 6 m. In addition, this paper discusses how inkjet printing can be applied to cork surfaces, and an RFID tag printed on cork is used as a humidity sensor. Its performance is tested under different humidity conditions, and a good range in excess of 3 m has been achieved, allied to a good sensitivity obtained with a shift of >5 dB in threshold power of the tag for different humid conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless Body Area Network (WBAN) is the most convenient, cost-effective, accurate, and non-invasive technology for e-health monitoring. The performance of WBAN may be disturbed when coexisting with other wireless networks. Accordingly, this paper provides a comprehensive study and in-depth analysis of coexistence issues and interference mitigation solutions in WBAN technologies. A thorough survey of state-of-the art research in WBAN coexistence issues is conducted. The survey classified, discussed, and compared the studies according to the parameters used to analyze the coexistence problem. Solutions suggested by the studies are then classified according to the followed techniques and concomitant shortcomings are identified. Moreover, the coexistence problem in WBAN technologies is mathematically analyzed and formulas are derived for the probability of successful channel access for different wireless technologies with the coexistence of an interfering network. Finally, extensive simulations are conducted using OPNET with several real-life scenarios to evaluate the impact of coexistence interference on different WBAN technologies. In particular, three main WBAN wireless technologies are considered: IEEE 802.15.6, IEEE 802.15.4, and low-power WiFi. The mathematical analysis and the simulation results are discussed and the impact of interfering network on the different wireless technologies is compared and analyzed. The results show that an interfering network (e.g., standard WiFi) has an impact on the performance of WBAN and may disrupt its operation. In addition, using low-power WiFi for WBANs is investigated and proved to be a feasible option compared to other wireless technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This book discusses in detail the CMOS implementation of energy harvesting. The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed. The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system. The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system. © 2016 Springer International Publishing. All rights are reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International Conference on Emerging Technologies and Factory Automation (ETFA 2015), Industrial Communication Technologies and Systems, Luxembourg, Luxembourg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Internet of Things (IoT) has emerged as a paradigm over the last few years as a result of the tight integration of the computing and the physical world. The requirement of remote sensing makes low-power wireless sensor networks one of the key enabling technologies of IoT. These networks encompass several challenges, especially in communication and networking, due to their inherent constraints of low-power features, deployment in harsh and lossy environments, and limited computing and storage resources. The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) [1] was proposed by the IETF ROLL (Routing Over Low-power Lossy links) working group and is currently adopted as an IETF standard in the RFC 6550 since March 2012. Although RPL greatly satisfied the requirements of low-power and lossy sensor networks, several issues remain open for improvement and specification, in particular with respect to Quality of Service (QoS) guarantees and support for mobility. In this paper, we focus mainly on the RPL routing protocol. We propose some enhancements to the standard specification in order to provide QoS guarantees for static as well as mobile LLNs. For this purpose, we propose OF-FL (Objective Function based on Fuzzy Logic), a new objective function that overcomes the limitations of the standardized objective functions that were designed for RPL by considering important link and node metrics, namely end-to-end delay, number of hops, ETX (Expected transmission count) and LQL (Link Quality Level). In addition, we present the design of Co-RPL, an extension to RPL based on the corona mechanism that supports mobility in order to overcome the problem of slow reactivity to frequent topology changes and thus providing a better quality of service mainly in dynamic networks application. Performance evaluation results show that both OF-FL and Co-RPL allow a great improvement when compared to the standard specification, mainly in terms of packet loss ratio and average network latency. 2015 Elsevier B.V. Al

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future broadband wireless systems are expected to cope with severely time dispersive channels, due to multi-path signal propagation between the transmitter and the receiver while having high power and spectral efficiency. Thus, advanced Frequency Domain Equalization techniques are required. The implementation complexity in mobile terminals should be as low as possible to achieve highest possible efficiency. Therefore, most of the signal processing requirements will be shifted to the base station and we will employ signals compatible with an efficient, grossly nonlinear power amplification. For this reason, we will consider offset modulation signals with quasi-constant envelope and develop receivers that will obtain good BER performance. However, these signals require a bandwidth significantly above the Nyquist rate, which can be reduced by an overlap of different frequency channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis a piezoelectric energy harvesting system, responsible for regulating the power output of a piezoelectric transducer subjected to ambient vibration, is designed to power an RF receiver with a 6 mW power consump-tion. The electrical characterisation of the chosen piezoelectric transducer is the starting point of the design, which subsequently presents a full-bridge cross-coupled rectifier that rectifies the AC output of the transducer and a low-dropout regulator responsible for delivering a constant voltage system output of 0.6 V, with low voltage ripple, which represents the receiver’s required sup-ply voltage. The circuit is designed using CMOS 130 nm UMC technology, and the system presents an inductorless architecture, with reduced area and cost. The electrical simulations run for the complete circuit lead to the conclusion that the proposed piezoelectric energy harvesting system is a plausible solution to power the RF receiver, provided that the chosen transducer is subjected to moderate levels of vibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a multifunctional converter to interface renewable energy sources (e.g., solar photovoltaic panels) and electric vehicles (EVs) with the power grid in smart grids context. This multifunctional converter allows deliver energy from the solar photovoltaic panels to an EV or to the power grid, and exchange energy in bidirectional mode between the EV and the power grid. Using this multifunctional converter are not required multiple conversion stages, as occurs with the traditional solutions, where are necessary two power converters to integrate the solar photovoltaic system in the power grid and also two power converters to integrate an off-board EV battery charger in the power grid (dc-dc and dc-ac power converters in both cases). Taking into account that the energy provided (or delivered) from the power grid in each moment is function of the EV operation mode and also of the energy produced from the solar photovoltaic system, it is possible to define operation strategies and control algorithms in order to increase the energy efficiency of the global system and to improve the power quality of the electrical system. The proposed multifunctional converter allows the operation in four distinct cases: (a) Transfer of energy from the solar photovoltaic system to the power grid; (b) Transfer of energy from the solar photovoltaic system and from the EV to the power grid; (c) Transfer of energy from the solar photovoltaic system to the EV or to the power grid; (d) Transfer of energy between the EV and the power grid. Along the paper are described the system architecture and the control algorithms, and are also presented some computational simulation results for the four aforementioned cases. It is also presented a comparative analysis between the traditional and the proposed solution in terms of operation efficiency and estimated cost of implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production of citric acid from crude glycerol from biodiesel industry, in batch cultures of Yarrowia lipolytica W29 was performed in a lab-scale stirred tank bioreactor in order to assess the effect of oxygen mass transfer rate in this bioprocess. An empirical correlation was proposed to describe oxygen volumetric mass transfer coefficient (kLa) as a function of operating conditions (stirring speed and specific air flow rate) and cellular density. kLa increased according with a power function with specific power input and superficial gas velocity, and slightly decreased with cellular density. The increase of initial kLa from 7 h-1 to 55 h-1 led to 7.8-fold increase of citric acid final concentration. Experiments were also performed at controlled dissolved oxygen (DO) and citric acid concentration increased with DO up to 60% of saturation. Thus, due to the simpler operation setting an optimal kLa than at controlled DO, it can be concluded that kLa is an adequate parameter for the optimization of citric acid production from crude glycerol by Y. lipolytica and to be considered in bioprocess scale-up. Our empirical correlation, considering the operating conditions and cellular density, will be a valid tool for this purpose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays a huge attention of the academia and research teams is attracted to the potential of the usage of the 60 GHz frequency band in the wireless communications. The use of the 60GHz frequency band offers great possibilities for wide variety of applications that are yet to be implemented. These applications also imply huge implementation challenges. Such example is building a high data rate transceiver which at the same time would have very low power consumption. In this paper we present a prototype of Single Carrier -SC transceiver system, illustrating a brief overview of the baseband design, emphasizing the most important decisions that need to be done. A brief overview of the possible approaches when implementing the equalizer, as the most complex module in the SC transceiver, is also presented. The main focus of this paper is to suggest a parallel architecture for the receiver in a Single Carrier communication system. This would provide higher data rates that the communication system canachieve, for a price of higher power consumption. The suggested architecture of such receiver is illustrated in this paper,giving the results of its implementation in comparison with its corresponding serial implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the specific heat transfer coefficient (UA) and the volumetric mass transfer coefficient (kLa) play an important role for the design of biotechnological processes, different techniques were developed in the past for the determination of these parameters. However, these approaches often use imprecise dynamic methods for the description of stationary processes and are limited towards scale and geometry of the bioreactor. Therefore, the aim of this thesis was to develop a new method, which overcomes these restrictions. This new approach is based on a permanent production of heat and oxygen by the constant decomposition of hydrogen peroxide in continuous mode. Since the degradation of H2O2 at standard conditions only takes place by the support of a catalyst, different candidates were investigated for their potential (regarding safety issues and reaction kinetic). Manganese-(IV)-oxide was found to be suitable. To compensate the inactivation of MnO2, a continuous process with repeated feeds of fresh MnO2 was established. Subsequently, a scale-up was successfully carried out from 100 mL to a 5 litre glass bioreactor (UniVessel®)To show the applicability of this new method for the characterisation of bioreactors, it was compared with common approaches. With the newly established technique as well as with a conventional procedure, which is based on an electrical heat source, specific heat transfer coefficients were measured in the range of 17.1 – 24.8 W/K for power inputs of about 50 – 70 W/L. However, a first proof of concept regarding the mass transfer showed no constant kLa for different dilution rates up to 0.04 h-1.Based on this, consecutive studies concerning the mass transfer should be made with higher volume flows, due to more even inflow rates. In addition, further experiments are advisable, to analyse the heat transfer in single-use bioreactors and in larger common systems.